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magnitude of the dynamic contact stresses, wave propagation velocities, envelope
of load transfer and wave attenuation.

The computational work employed two different numerical techniques to simulate
dynamic load transfer in the granular materials under study. The first technique
used the distinct element method whereby the dynamic behavior of an assembly of
particles is modeled with Newtonian rigid-body mechanics using prescribed
interparticle contact laws to account for stiffness and damping interactionms.

New dynamic contact law models have been develped for use in the distinct element
wave propagation code. The second method employed the concept of replacing the
granular assembly with an equivalent elastic network which was then analyzed by
the finite element method using one-dimensional dynamic bar elements. Boundary
and finite element methods were also used to investigate the basic dynamic
interaction mechanisms between particles in contact. Experimental data was used
to characterize modeling parameters used in the wave propagation codes and to
validate numerical predictions.
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SUMMARY

This final report presents the progress and accomplishments of the three-year
research program sponsored by the Air Force Office of Scientific Research under contract
F49620-89-C-0091 to the University of Rhode Island. This research program has been
involved with wave propagation and dynamic load transfer in heterogeneous granular
materials. The overall objectives of the program were to provide a basic understanding
of the dynamic load transfer processes in particulate media, and how local microstructure
or fabric effect the overall wave propagation through the material.

The research program focused on the dynamic response of particulate media when
they are subjected to explosive loadings with typical duration times of 30 to S00us. Such
loadings produce propagating stress waves moving with distinct speeds and attenuating
with propagational distance. In such materials, these mechanical signals are transmitted
locally along a series of complex and discrete paths, established by the media
microstructure. In order to investigate the local microstructural or fabric effects on
dynamic load transfer, a comprehensive experimental and theoretical research program
was established. Studies were conducted on dynamically loaded model granular materials
composed of two-dimensional assemblies of circular disks arranged in a wide variety of
packing geometries. Both particle size and material were systematically varied to study
the effects of heterogeneity and fabric.

The experimental program employed methods of dynamic photoelasticity and
electrical resistance strain gages. Dynamic photoelasticity is an optical technique in
which full-field stress data may be collected at various instants of time using high speed
photography. The method was applied to the present research program by constructing
model granular assemblies of birefringent disks which were dynamically loaded by
exploding a small charge of PETN directly on top of one of the disks. These model
media along with the loading apparatus were placed in the optical bench of a high-speed.
multiple-spark gap camera. This high-speed photographic system operates as a series of
high intensity, extremely short duration pulses of light and provides 20 photoelastic
images at discrete times during the dynamic event. Framing rates of up to 10° frames per
second are attainable using this system. and the collected experimental data are

photographs of isochromatic tringe patterns at different times as the stress wave passes




through the model granular assembly. Such photographic data provides full-field
qualitative and quantitative information on the nature of dynamic stress distribution, and
allows determination of the wave speed, interparticle contact load transfer, and the wave
spreading characteristics. Because certain segments of our research required opaque
particulate media or very long assemblies of granules, the optical photoelastic technique
was replaced by dynamic strain gage instrumentation. Electrical resistance strain gages
were bonded to predetermined particles in particular model assemblies. The dynamic
signal from the gage gives the transient strain response at that focation on the particie.
Although this technique does not give full-field data, it does provide sufficient
information to calculate the wave speed and amplitude attenuation (intergranular contact
load).

The theoretical program conducted in this study employed several numerical
techniques including finite, boundary and distinct element methods. Dynamic
intergranular contact was analyzed using both finite element and boundary element
schemes which investigated the details of the dynamic load transfer between idealized
granular particles. In addition, finite element methods were also used in our elastic
network modeling in which granular media were replaced by equivalent elastic networks.
Each link in the network was a one-dimensional, tension-only finite element, and a
nonlinear solution strategy was developed to calculate the dynamic response of the
network at various time steps.

A large portion of our theoretical work involved the use of the distinct element
method to simulate or model the behavior of large assemblies of circular disks. In this
method, the contact forces and displacements of an assembly of disks are determined
through a series of calculations tracing the movements of each of the individual disks.
For applications to wave propagation, the movements of each of the disks are a result of
the propagation through the medium of disturbances originating at the loading points.
Newtonian rigid-body mechanics is used to model the translational and rotationa! motion
of each disk in a model assembly. The technique establishes a discretized time stepping
numerical routine, in which it is assumed that during each time step, disturbances cannot
propagate from any disk further than its immediate neighbors. Under these assumptions,

the method becomes explicit, and therefore at any time increment the resultant forces on
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any disk are determined solely by its interactions with the disks it is in contact. Major
contributions of our distinct element studies were in the development new dynamic
intergranular contact laws which accurately predicted the load transfer in a wide variety
of model particulate materials. We have found that this intergranular contact behavior
establishes the dynamic constitutive response of particulate media under loading rates of
short duration.

Significant coupling of the experimental and theoretical segments of our research
program occurred in which the theoretical modeling provided direction as to what data
would be the most useful to understand the dynamic material response. Experiments
provided important data needed in the characterization (i.e. modeling parameter
determinations) of the developed numerical models. Finally, experimental data has been
collected on numerous model granular assemblies, and this has been used to verify the
predictive capabilities of the numerical simulations.

We have found that local microstructural effects in particulate media do influence
the dynamic load transfer and the resulting wave propagation. Several important tabric
measures have been determine which affect wave propagation and these include: the
relative positions of neighboring particles (normally measured by the so-called branch
vectors); the location and direction of the contact normal vectors between particles; and
the interparticle contact force-deformation laws. The first two of these fabric measures
are kinematical in nature because they are determined by the particle shapes and packing
geometries. The final fabric measure dealing with the contact mechanics is kinetic. being
determined by the particle material and shape properties and by the contact surface
conditions.

Therefore our studies have determined new and fundamental knowledge of the
dynamic load transfer between particles. Numerous heterogeneous and fabric influences

have been studied including the effects of:

contact angle or branch vector

wavelength and pulse duration

- particle matenal, size and shape

intergranular contact law

random granular anisotropy




In addition, we have developed several modeling tools which include dynamic contact
simulators, particulate media generators, and finite and distinct element wave propagation
codes. Details of these accomplishments will be presented in the following sections of

this report.




BRIEF REVIEW OF RESULTS

During the course of our studies a number of interesting and fundamental
developments were found as related to wave propagation in granular and particulate
materials. Some new experimental and numerical appreaches were created to understand
and explain the basic mechanisms of dynamic load transfer in such materials. A brief
review of the important results are listed below which is then followed by detailed
descriptions in the appendix.
Prediction of Dynamic Contact Loads in Granular Assemblies Using Load Transfer
CoefTicients

An experimental-numerical hybrid technique was developed to predict the
intergranular contact load transfer in granular media subjected to explosive loading. The
granular media was simulated by assemblies of circular disks in contact. The peak
contact load transfer coefficients (i.e. the ratio of the maximum output contact load to the
input contact load as a function of the contact angles) of a given particle were obtained
through controlled experimental studies. These coefficients, along with the principle of
superposition, were then used to predict the peak contact loads in several regular as well
as irregular assemblies of disks. The predicted results compared tavorably with the
experimental data for several different assemblies.
Granular Contact Law Effects

The microstructurai wave propagation behavior of a granular medium was modeled
using the distinct element method. This technique simulates the discrete behavior of the
medium by assuming that the motion of each particle may be modeled using Newtonian
rigid-body mechanics with particular force-deformation and force-deformation rate contact
laws. The present work provided a comparison of the effects of various contact laws on
the wave propagational behaviors including wave attenuation and  dispersion
characteristics. Specific ca~es which were studied include linear. non-linear and non-
linear hysteretic force-de Jormation contact laws along with velocity proportional damping.
Numerical results were compared with experimental data from dynamic photoelastic and
strain gage experiments. Since velocity dependent contact damping is not a reasonable

model for dry cohesionless granular media. it was desired to determine it a non-lincar

hysteretic contact faw could be used to replace the velocity damping. Results indicate




that such a non-lnear law does provide a damping mechanism which can predict
experimental attenuation data, and that the dispersion characteristics are modeled more
accurately with this hysteretic model.
Effects of Particle Size and Loading Pulse Duration on Dynamic Load Transfer

An experimental and numerical investigation was conducted to study the dynamic
response of granular media when subjected to loadings with different wavelengths. The
granular media was simulated by an assembly of circular disks arranged in a long straight
single chain. The dynamic loading was produced by either an explosive or by impacting
a projectile from a gas gun onto one end of the granular assembly. It was found from the
experiments that an input wave with a short period of 90us (wavelength to diameter ratio
of four) will propagate in this granular media with a steady amplitude attenuation. On
the other hand, the long wave (period about 630 (s to 900 ps) will propagate through this
granular media with first an increase of amplitude (up to 40% higher than the input)
which is then followed by a decrease of amplitude. In addition, oscillation behavior was
found within the main wave pulse indicating significant dispersion of the input signal.
Numerical distinct element analyses also predicted the same behavior observed in the
experiments. Thus there exists a fundamental change in the local propagational behavior
of waves in granular media for waves with different wave length.
Preliminary Studies on the Effect of the Particle Shape on Wave Propagation
Phenomenon

Preliminary experimental and numerical investigations have been conducted to
investigate the effect of particle shape and size on the inter-granular load transter. Studies
include the velocity and wavelength behavior of a stress wave transmitted through
granular media subjected to explosive loading. Dynamic photoelasticity and distinct
element modeling were used to study this stress wave propagation through granular media
simulated b assemblies of elliptical particles in contact.  The results indicate that the
shape of the particle has considerable effect on both velocity as well as attenuation of the
SUESS wave.
The Effect of Preloading on Dynamic Response of Granular Media

A serics of experiments were conducted in which an initial biaxial prestress was

applied to the granular assembly before it was subjected to dvnamic loading. A viaxial
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loading fixture was designed which could exert a variety of biaxial loadings on the
granular assembly. The effect of several different ratios of the biaxial stress on wave
propagation in granular assemblies was studicd. The results indicate that the initial load
on the granular media effects both the velocity as well as the attenuation of the stress
wave.
Dynamic Simulation of Granular Media Using Elastic Networks

A microstructural wave propagation model was developed for cohesionless
granular media in which the dynamic load transter between adjacent particles is simulated
through a special finite element scheme. The particulate media is modeled by an
equivalent elustic network which is consiructed by connecting all adjacent particle mass
centers with an elastic load-carrying link. The link behavior is modeled with a one
dimensional finite element that is tensionless and carries end moments and axial and shear
forces. The resulting solution procedure is nonlinear, and model stiffness and daiaping
parameters were obtained from dynamic photoelastic experiments. Several types of two-
dimensional assemblies were studied, and these numerical results compared favorably with
experimental data.
Dynamic Interparticle Load Transfer Studies Using Boundary and Finite Element
Methods

The dynamic interparticle load transfer plays a primary role in the propagation of
waves in granular materials, and this contact behavior is an important parameter in our
modeling efforts using distinct and elastic network element methods. In order to obtain
a more complete understanding of this phenomena, theoretical boundary and finite
element analyses were applied to the problem. The dynamic interaction of two or more
elastic particles in contact represents a nonlinear initial/boundary-value problem of
elastodynamics. These problems were attacked using boundary discretization schemes
(boundary element methods) and interior discretization schemes (finite element methods)
apphed to model the dyna.aic interaction between two or more idealized circular disk
particles. A dynamic input was applied to one of the disks, and the transient load transter
through the contact point(s) was computed.  Load transfer profiles tor circular and
elliptical particles were calculated, and the results compared favorably with experimental

data.




Influence of Local Heterogeneities on Dynamic Stress History in Granular
Assemblies

An experinental-numerical study was conducted to investigate the etfects of
microstructural defects, such as inclusions and voids, on the wave propagation phenomena
in granular materials. The granular materials as well as the defects were simulated using
circular disks in both one-and two-dimensional experiments. The defects were of two
types, namely, inclusions and voids. Dynamic photoelasticity and h.gh-speed photography
and numerical distinct element modeling were used to study the effects of these defects
on the local stress field during wave propagation. Results indicate that both inclusions
and voids produce local wave scattering through various reflection mechanisms.,
Inclusions increase the wavelength of the loading pulse and produce local attenuation
while voids change the local energy-transfer paths.
Wave Propagation in Heterogenous Granular and Layvered Media

Dynamic load tansfer due to explosive loading in layered and heterogenous
granular assemblies was studied using dynamic photoclasticity.  The heterogenous
granular assemblies consisted of circular discs fabricated from photoelastic materials such
as Homalite 100, PSM1, PSM4, PSM9Y, CR-39 and nonphotoelastic materials such as
steel, rock and aluminum. The experimental results showed that the local microstructure
control: the magnitude of load transferred in any given direction. The load transfer
depends not only on the angle between the branch vectors drawn from the mass center
of the contacting granules but also on the acoustic impedance of the contacting granules.
The wave dispersion and scattering produced by the mismatch of acoustic impedance in
the heterogenous assemblies resulted in more peak contact load attenuation than in a
homogenous granular medium. Systematic experiments were also conducted to quantify
the load transferred from one granule to the other as a function of branch angle as well
as material properties. This information was used to propose an empirical lo.d transter
model to predict peak contact loads in heterogenous ssemblies.
Dynamic Load Transfer in Virgin and Damaged Particles

An experituental investigation was conducted 0 study dynamic load transfer in
granular rock media. The granular rock media was modeled as a one-dimensional chain

of disks fabricated from four different types of white Vermont marble. The study focused




on the effect of microstructure on transient pulse propagation generated by explosive
loading. During wave propagation dynamic contact strains were recorded using electrical
resistance strain gages. This information was used to calculate wave velocity and
attenuation as a function of the cumulative damage in the disk assembly. The results
indicate a considerable influence of the microstructure and prior loading history on the
wave propagation process. A correlation exists between the stress wave velocity and the
microstructure of the rock material. Also the wave velocity increases initially and then
decreases with the repeated explosive loading.
Wave Propagation in Saturated Granular Media

Some preliminary experiments were conducted to investigate the effect of
interstitial fluid on wave propagation phenomenon. The experiments were conducted with
circular discs and the space between discs was filled by different fluids such as water and
Dow Coming 200 fluids with different viscosities. High speed photographs of the
dynamic event showed that both wave velociry and attenuation are affected by the tluid.
The effect 1s more prominent on wave attenuation.
Studies of Large Random Assemblies

Distinct element simulations were conducted on large random assemblies in order
to investigate the effects of granular anisotropy on the wave propagational characteristics.
Special granular assemblies were computationally constructed by random particulate
media generators. These generators used special algorithms to construct assemblies with
varying degrees of anisotropy as measured by the distributions of local branch vectors
between adjacent particles. Anisotropy was characterized with respect to two orthogonal
directions in the media. Distinct element results compared wave propagation along these
orthogonal directions, and the findings indicated that media anisotropy does significantly

effect the wave speed and attenuation.
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related to our research project were discussed in detail.

Dr. L.D. Miller of the U.S. Army Foreign Science and Technology Center visited our
laboratory in March 1990. During his two day visit, we discussed in general about
wave motion in granular assemblies and in particular about the possibility of
propagating soliton waves in such materials.

Our research group hosted a visit by Major John Gill of the USAF, Geologic
Response Section, Phillips Laboratory, Kirtland Air Force Base, on March 26, 1991.
He gave us a seminar dealing with his research on micro-geomechanics, and we
presented and discussed several issues related to our research.

Prof. J.W. Dally from the University of Maryland visited our research group on Feb.
15, 1991. We discussed different aspects of experimental mechanics approaches

related to our research.

Major Martin Lewis from AFOSR visited our group in March 1992, In depth
discussions on various topic related to particulate material were held.

Prof. C. S. Chang from the University of Massachusetts visited our group on
September 22, 1992. We discussed different aspects of our work as related to AFOSR.
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APPENDICES
CHAPTER 1

EXPERIMENTAL-NUMERICAL PREDICTION
OF DYNAMIC CONTACT LOADS

L1 INTRODUCTION

Numerical methods model the behavior of an idealized granular particle by calculating
the motion of individual grains in the assembly as they interact with each other. There
1s no assumed constitutive relation between stress and strain in the bulk material. Instead,
the bulk behavior is determined from space and time averages of the loads on individual
granules and their resulting movements. These methods are more flexible in application
than theoretical ones.

Cundall and Strack (1979, 1983) pioneered the distinct element method for handling
large number of particles of any shape. In this method. the interaction of particles is
viewed as a transient problem with states of equilibrium developing whenever the internal
forces balance. An explicit numerical scheme is used to monitor the interaction of
particles contact by contact and to model the motion of the media particle by particle.
Exiensions of this method have been made by Walton (1982), Thornton (1985), Sadd
(1989a) and Ting (1989). Swrrano and Rodrigue-Ortiz (1973) and Rodrigue-Ortiz (1974)
developed a numerical model for assemblies of discs and spheres. Contact forces and
displacements are calculated for equilibrium conditions. Hertzian-type contact compliances
are used for normal forces. Theories of Mindlin and Deresiewicz are used for tangential
forces. In this modelling, the matrix representing the contact stiffnesses must be
reformulated whenever a contact is made or broken and shape changes are assumed
negligible. Inelasticity and friction effects are modeled via a collision operator that
determines post collisional  trajectories and rotations for particles involved in
instantaneous, binary, impacts. Hopkins (1985) simulated the effects of particle collisions
in uniform shearing flows by randomly selecting two particles from a large ensemble of
particles representing a statistically meaningful sample of the particles in the tlow. One

of the selected particles is temporarily located at the origin and the other is assigned a
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random pre-collision position on a sphere whose radius equals the expected mean
separation for a system at the modeled solid concentration.

An experimental-numerical hybrid technique has been developed in this study. A
transfer function, i.e. the ratio of the maximum output contact load to the maximum input
contact load of a given particle, determined from controlled experiments has been used
to predict the dynamic intergranular contact load transfer in granular media. The granular
materials with systematic as well as irregular packing microstructure as shown in Fig. 1.1
were simulated by assemblies of circular discs. It has been verified by experiments that
at most of the contact points the tangential load is less than 15 % of the normal load.
Thus in this investigation only normal contact loads were considered. Initially a series of
calibration experiments of controlled microstructure were conducted in which the contact
angles between the granules were systematically varied. The data obtained from each
experiment was analyzed to get a load transfer coefficient for a given disc. This
coefficient was obtained for several contact angles and number of contacts per disc. With
various load transfer coefficients determined, a numerical scheme was developed using
the experimental daca and based on the principle of superposition. Predictions were made
of the intergranular contact loadings for several model assemblies with different
microstructure as shown in Fig.l.l. Numerical predictions were compared with
experimental data for these models. Although the numerical scheme is very simple, the
predicted results compared fairly well with the photoelastic experimental data.

1.2 LOAD TRANSFER FORMULATION

The microstructure of a granular medium can be characterized by branch vectors
drawn between the mass centers of adjacent discs as shown in Fig.1.2. The angle 0 is that
between any two neighboring branch vectors and is denoted as the contact angle. It has
been shown by Shukla et al. (1988) that the dynamic load transfer phenomena in granular
media are strongly dependent on the contact angles made by the adjacent branch vectors.
Experimental fringe patterns from their work obtained in a hexagonal closed packing
(HCP) granular assembly for the geometry of Fig.1.1b are shown in Fig.1.3b. Normal
contact load profiles of a typical disc, A, in this HCP model are shown in Fig.1.4. Wave
energy entering at point 1 shows maximum transfer across point 2 which is directly ahead

of point 1. Although contact points 3 and 4 make the same angles with the input point
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1, the contact load is higher at point 4 than point 3 due to the superposition of loads from
the other discs. No load transfer occurs across points 5 and 6 as the contact angles are
larger than (11/2) for these points. It is apparent that load transfer in a granular medium
occurs primarily through contact mechanisms between adjacent particles, and thus various
discrete load transfer paths will be established through the space that the media occupics.
These load transfer paths are a result of the geometry of the granular assembly. and are
especially related to the locations of the contacts of the various particles. For the dynamic
case, inertia becomes significant and the location of the mass centers of the particles will
also be important in the load transfer process. For the cases under study with circular
discs, the branch vectors defined in Fig.1.2 completely describe the relative location of
both the contact points and the particle mass centers. Thus it seems reasonable to develop
a load transfer theory based upon the use of the branch vectors to predict the transmission
of dynamic signals from disc to disc. The theory to be proposed is intended to predict the
peak inter-granular load transfer between discs in model assemblies of granular media.
Referring to Fig.1.2, the peak load transfer through the j-th contact of any arbitrary

disc may be written in the form,
(1.1

where P, is the peak output load at the j-th contact, P, is the peak input load to this disc,
and C; is defined to be the load transfer coefficient which relates these peak inter-granular
loads. Clearly, this load transfer coefficient depends on various contact angles made by
the branch vectors of this disc. For discs of equal diameter, the maximum number of
possible contacts is limited to six. Furthermore, as mentioned previously, experiments
have shown that when the contact angle is greater than or equal to 90°, no load transfer
will occur and thus C; will be zero for these cases. Therefore for equal diameter discs.
the range of the index j will be limited from one to three, and the load transfer coefficient
will be a function of at most three relative contact angles, i.e. C, = C(8,,6,.0;). where the
angles 9,. 0,, 8, are defined in Fig.1.5 relative to the input direction of the disc. If in
any particular assembly one of these angles becomes larger than 90, then this contact is

removed from the analysis. Consequently, for a given input point, at most only three
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output contacts will be able to transmit the dyvnamic signal to adjacent discs.

1.3 EXPERIMENTAL DETERMINATION OF LOAD TRANSFER COEFFICIENTS

In order to determine the peak contact load transfer coefticients, C(0, 6,, 8,),
experiments were conducted on the three groups of models, that is, the two, three and
four contact point models. A general four contact point model is shown in Fig.1.5. In
experiments of the two contact point model, contact angles 6, and 8, were kept at 90°.
Only contact angle 6, was systematically varied from 0° to 90°. In experiments of the
three contact point model, contact angle 8; was kept at 90°, and both contact angles 6,
and 6, were systematically varied. In experiments of the four contact point model, all
three contact angles 6,, 8, and 0, were systematically varied. For simplicity the granular
materials were simulated by assemblies of 25.4 mm, 6.35 mm thick discs of Homalite-
100. The experimental models were placed in the optical bench of a high speed multiple
spark gap camera. The camera was triggered at some prescribed delay time after igniting
the explosive. The high speed phbt()graphic system operated as a series of high intensity,
extremely short duration pulses of light and provided 20 isochromatic fringe images at
discrete times during the dynamic event.

The isochromatic fringes photographed during the experiments were analyzed by
the numerical method developed by Shukla and Nigam (1985) to determine the contact
length and friction factor from the full field photoelastic fringe patterns. These obtained
values were substituted in the Herntz stress field equations and the contact stresses were
numerically integrated along the contact length to obtain the normal and tangential contact
loads.

For a two contact point model, contact angles 6, and 9, are 90° and C, and C, are
therefore identically equal to zero. For a three contact point model, 8, is taken to be 90°
and hence C, is identically zero.

The transfer coetficients C, thus obtained from the three groups of experiments
were plotted as a function of the contact angles 6,. 6, and 8., as shown in Figs.1.6 10 1.8.
In Fig.1.6, curve 1 represents the ratio of P,/P, vs. contact angle 8, when both the contact
angles 8, and 6, are equal to 90°. Since both P, and P, are zero, it actually represents

the transfer coefficient C, of the two contact point model. The remaining curves in Fig.
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1.6 represent the transfer coefticients C, vs. contact angle 8, of the three contact point
model when contact angle 6, is 90° and 0, is also a constant but less than 90° (it is equal
to 30°, 45°, 60° and 75° respectively). Fig.1.7 shows the transfer coefficients C, vs.
contact angle €, for the four contact point model when the contact angles 6,=0° with
various values of 8,, while Fig.1.8 shows the transfer coefficient C, vs. contact angle 6,
for the same four contact point model. The transfer coefticient C, for the four contact
point model can be obtained easily using Figs.1.6 and 1.8 and the property that
C,(8,,6,,90°) = C,(6,,6,,90°) and C,(8,,0°.8,) = C,(6,.0°.9)).
1.4 NUMERICAL IMPLEMENTATION

The expenmentally determined peak contact load transfer coefficients were used
to construct a numerical scheme capable of predicting dynamic load transfer in granular
aggregate assemblies of discs. Several assumptions were used in this numerical method.
First, only normal contact loading was considered in this study. The tangential contact
loads were assumed to be zero. Next the speed of propagation of the mechanical signal
is assumed to be constant, a fact which has been observed from the experiments. The load
transfer coefficients are taken to be independent of the loading amplitude. Finally, simple
superposition of loading, as shown in Fig.1.9, is used when more than one input contact
load occurs on a given disc. Figs.1.6 to 1.8 combined with a Lagrangian interpolation
method have been used to obtain all the necessary transfer coefficients to predict the peak
contact loads in granular media. As an example consider the transfer coefficients for a
four contact point model (8,=60°. 8,=0° and 8,=65°) as shown in Fig.1.5. Since 6, and
8, are equal to the two contact angles of curve 4 in Fig.1.8, the transfer coefficient C, can
be obtained directly and is equal to (0.273. In contrast, the transter coefficient C, can not
be obtained directly. However it can be obtained by using the curves in Fig.1.8§ combined
with the Lagrangian interpolation method and the symmetrical property C,(60°,0°,65°) =
C4(65°,0°,60°). Using the values C,(60°.0°.60%) = 0.28. C,(70°.0°,60°) = 0.294,
C,(80°,0°,60°) = (0.32 and cur Lagrangian interpolation method, we get C,(60°.0°.65°) =
C,(65°,0°,60°) = 0.286. The transfer coefficients C, can be obtained directly from curve
3in Fig.1.7, C, = C,(60°,0°,65°) = 0.775.

After the three transfer coefficients have been obtained. the relevant output peak

contact loads for the four contact point model can be computed easity. According to the




definition of the peak contact load transfer coefficient, the three output peak contact loads

P,. P,, and P, at contact points 1, 2 and 3 are calculated as follows,

1.5 RESULTS AND DISCUSSION

The experimental-numerical hybrid method was used to predict peak contact loads
at every contact point in various models of granular media. Four different microstructural
packings illustrated in Fig.1.1 were used in this study. Experimental fringe patterns
obtained for each of the microstructures are shown in Fig.1.3. The comparison of the
numerical and experimental results are shown in Figs.1.10 to 1.13.

Fig.1.3a shows a sequence of seven photographs obtained as the wave travels in
a single chain of granular media as shown in Fig.1.1a. In this geometry each particle has
two contact points, hence only one transfer coefficient is needed to model this geometry.
This transfer coefficient is obtained from Fig.1.6, C, = C,(90°,0°.90°) = 0.97. The peak

contact loads at each contact point can be determined as follows,

Pz = C2P1
p} = C2P2 = szpl (13)
P, = C'P,

The comparison of numerical and experimental peak contact loads in the single
chain is shown in Fig.1.10. The average peak contact load error. {(P,,-P, /P, *100},
for this model is computed to be 5%. The results are in very good agreement because
most of the assumptions made in our numerical model are satisfied.

Fig.1.3b shows a photograph obtained as the wave travels in a hexagonal closed

packing (HCP) granular medium as shown in Fig. 1.1b. In this geometry each particle has
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six contact points. The major load in this assembly is transferred by two primary chains,
1 and 2, shown in Fig.1.1b. Experimental data showed that the tangentia’ contact loads
were very close to zero for the primary chains, hence they behaved similar to the single
chain assemblies. In the HCP model there are only two independent contact angles, 9, =
8, = 6V° and 6, = 0°, with respect to the input load. Thus only two transfer coefficients
were needed for the HCP model. From Figs.1.7 and 1.8, we obtain the two transfer
coefficients, C,(60°,0°,60°) = C,(60°,0°,60%= 0.28, C,(60°,0°60°) = 0.75. These
coefficients were used to determine the peak contact loads throughout the assembly. The
comparison of numerical and experimental results of the peak contact loads for the HCP
model is shown in Fig.1.11. The average error of the peak contact loads for this model
is 13%, with the average error along the center line of the primary chain being only 6%.

Fig.1.3c shows a photograph cbtained as the wave travels in the geometry of
Fig.1.1c, which will be referred to as a half hexagonal closed packing (HHCP) granular
medium. In this geometry a particle has either four or five contact points. It is observed
that most of the energy was transferred through a vertical column consisting of the HHCP
cells under the explosive and several horizontal chains as shown in Figs.1.3c and 1.12.
The peak contact loads were obtained by the same method discussed previously. The
comparison of numerical and experimental peak contact loads is shown in Fig.1.12. It was
found that the average error for this model is 12%. However the average error along the
center line of the horizontal chains is only 7.5%.

Fig.1.3d shows a photograph obtained as the wave travels in an irregular packing
granular medium as shown in Fig.1.1d. In this geometry particles have contact points
ranging from two to six. The fringes in Fig.1.3d reveal a complex nature of load transfer
phenomenon. The energy transfer showed no preferential direction in this model. In the
former three models, the tangential contact loads, especially along the main path of the
energy transfer, were quite small. However in this irregular model, at the contacts near
the explosive point, the fringes appeared unsymmetrical with respect to the contact points.
So it appears that sizable tangential loadings existed in this case. Away from the
explosive point, the fringes showed the tendency to become symmetric with respect to the
contact points. Again from Figs.1.6 to 1.8 all the transfer coefficients necessary for the

determination of the peak contact loads in the irregular packing granular medium were
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obtained. The comparison of numerical and experimental peak contact loads is shown in
Fig.1.13. The tangential contact loads tend to increase the average error in the peak
contact loads. This error was computed to be 19.0% for this model.
1.6 SUMMARY

A hybrid experimental-numerical technique has been developed to predict dynamic
intergranular contact loads due to explosive loading in different assemblies of circular
discs. For a known geometrical arrangement of discs the technique can predict contact
loads at any point in the assembly for a given input loading. The method utilizes
experimentally generated load transfer coefficients along with simple linear superposition
in space. The results from this scheme are compared with those obtained experimentally
using the method of dynamic photoelasticity. In general, the results are in good
agreement for regular packings of the discs. However, for an irregular packing the
agreement is marginal, and this is primarily due to the fact that the numerical scheme
currently does not take into account tangential contact loads which were quite large in
random arrangement. Further, the superposition method does not account for any angular
dependence of wave length of the loading pulse. It was shov'n vy Shukla et al. (1988) that
the duration of contact loads is dependent on e contact angles. Thus to obtain better

predictions, superpositions must be used ! oth in space as well as time.
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EXPLOSNE

Fig. 1.10 Comparison of the peak contact loads in a single chain arrangement
for the geometry of Fig.1.1a (numerical data at bottom)

Fig. 1.11 Comparison of the peak contact loads in a HCP arrangement for the
geometry of Fig.1.1b (numerical data at bottom)




Fig. 1.12 Comparison of the peak contact loads in a HHCP arrangement for
the geometry of Fig.1.1c (numerical data at bottom)

Fig. 1.13 Comparison of the peak contact loads in an irregular arrangement
for the geometry of Fig.1.1d (numerical data at bottom).
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CHAPTER 2

CONTACT LAW EFFECTS ON WAVE PROPAGATION IN
PARTICULATE MATERIALS USING DISTINCT ELEMENT MODELING

2.1 INTRODUCTION

It has been well established (Oda etal., 1982, Sadd etal., 1989a, and Shukla
et.al.,1988a) that load is transferred in a dry granular medium primarily through contact
mechanisms between neighboring particles. Using such a discrete concept many authors,
e.g., Digby (1981), Thornton and Barnes (1986), Patrakis and Dobry (1988), Patrakis,
Dobry, and Ng (1988), Kishino (1988), Chang and Ma (1990), Ting and Corkum (1992),
and Adely and Sadd (1992) have studied racroscopic quantities such as stress, strain, and
effective elastic moduli from the microstructural standpoint for quasi-equilibrium cases.
For the dynamic case, our previous studies (Shukla et.al., 1991, Zhu, et.al., 1991) have
shown that the propagation of mechanical waves through such a medium occurs along a
complex network of paths determined by the material’s granular microstructure. Showing
profound directional dependency in block-like materials, the recent numerical simulations
carried by Walton et.al. (1991) also support this concept. The process of load transfer is
determined by the particular contact interactions between the various grains in the media,
and these interactions are primarily controlled by the particle’s material properties and the
local geometric arrangements of the particles. Previous research (Sadd, etal., 1989a,
Shukla, etal., 1988a, 1991) has indicated that the wave speed will be primanly
determined by the granule elasticity and mass density, while the wave amplitude will be
most dependent on the geometry of the selected paths of propagation. Thus local
microstructure or fabric plays a dominant role in the transmission of mechanical loadings
through such materials.

Computer simulations employing the distinct element method as well as
experiments using dynamic photoelasticity and strain gages have been conducted to
investigate the effects of the local microstructure on wave propagation in granular media.
Specific contact laws governing the interactions between granules are necessary for such
computer simulations. The present study is concerned with the specific contact laws

which govern the dynamic constitutive behavior. Results using linear, nonlinear and
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nonlinear hysteretic normal contact laws with a nonlinear hysteretic tangential contact law
are given. Computational and experimental studies have been conducted on specific
aggregate assemblies composed of circular disks in order to simulate granular and
particulate materials.

2.2 THE DISTINCT ELEMENT METHOD

A numerical scheme originally developed by Cundall and Strack (1979), called the
distinct element method has been successfully used to simulate granular media by
modeling the dynamic behavior of large assemblies of spheres, circular disks, and blocks
(Thornton and Randall, 1988, Sadd, et.al., 1989a, Petrakis, et.al., 1988, Walton, 1991).
The distinct element meth 1 is a simplified modeling concept which uses Newtonian
rigid-body mechanics (0 mode! the translational and rotational motion of each disk in a
model assembly. Particles are allowed to have overlapping contact, and contact forces
are developed as a result of particular stiffness and/or damping characteristics. The
technique establishes a discretized time stepping numerical routine, in which granule
velocities and positions are obtained from numerical integration of the computed
accelerations. It is assumed that during each time step, disturbances cannot propagate
from any disk further than its immediate neighbors. Under these assumptions, the method
becomes explicit, and therefore at any time increment the resultant forces (and thus the
accelerations) on any disk are determined solely by its interactions with the disks it is in
contact. For applications to wave propagation, the movements of the individual disks are
a result of the propagation through the medium of disturbances originating at particular
input loading points.  Consequently, the wave speed and amplitude attenuation
(intergranular contact force) will be functions of the physical properties of the discrete
medium, i.e. the microstructure.

In order to describe the method, consider the case of two typical disks in contact
as shown in Fig. 2.1. The position, velocity, acceleration, angular velocity, angular
acceleration, radius, and mass of disk 1 are labeled as: r;, v, a,, ©,, &, R;, and m,, with
like notations for disk 2. The unit normal vector n and unit tangential vector t are
defined as shown, and these establish the normal and tangential directions used for the
contact analysis.

The normal component of relative contact velocity between the two disks is given
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v, =(¥,-V,)-n (2.1)

while the tangential relative velocity 1s

Vi = (v| - V2) -t - ((DIR, + (DZR:) . 2.2)

Using a finite difference scheme with constant properties over the time interval,
the relative velocities may be integrated with respect to time to yield the incremental

relative normal and tangential displacements, i.e.

Ad, = v,At = [(v, - v;) - n]At
(2.3)
AS, = vAt = [(v, - v) - t - (R, + 0,R,)]AL.

In a similar way, - .bsolute linear and angular velocities may be computed from the
accelerations 1sing the relations

Av = a At
(2.4)
Aw = O At

Through allowable deformations, the disks in contact are permitted to overlap with
one another such that the distance between their centers will become less than (R, + R,),
and contact forces will therefore exist between them. A particular contact force-
displacement law will then be necessary to calculate the forces on each disk in the
assembly. In general the contact law between two granules can be written as two

equations expressing the normal and tangential contact forces by

F, = F,(5,.v,,0,.v)
(2.5)
F, = F(8,v,.8.v) .

where 8, and §, are the relative normal and tangential displacements between adjacent
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disks in contact, and v, and v, are the relative normal and tangential velocities. The
contact forces may also be history dependent. A Coulomb-type friction law is

incorporated to deal with the tangential loading. This law is defined by
(Fx)mu = p’ Fn + ¢ . (26)
where W is the coefficient of friction and ¢ is the cohesion between the two disks. If the

magnitude of F, found from equation (2.5), is larger than (F)

(F)max-

mace then Fis set equal to
Using Newton’s second law of motion, the linear and angular accelerations of each

disk at each time interval can be determined. For disk 1, such an application would give

2F, = m,a,
(2.7)
M, = o,
where XF, and M, are the resultant force and moment on disk 1, and I, is the moment
of inertia of the disk. Equations (2.7) can thus be solved for the accelerations a, and o
over each time increment. With the accelerations known, the velocities follow from
application of equation (2.4) and the relative displacements can then be computed from
equation (2.3). This leads to new values of the contact forces through relation (2.5) for
the next time increment, and the cycle is repeated again for each disk (see flow chart in
Fig. 2.2). In this manner, large assemblies of disks can be analyzed in a reasonable
amount of computer time.
2.3 CONTACT LAW MODELS
It is obvious that the propagational characteristics depend on the process of load
transfer between disks. Since the load transfer is governed by the contact mechanism of
the disks, the characteristics will depend on the contact laws (2-5), and thus we wish to
investigate the effects of using several different types of contact laws. Figure 2.3
illustrates the cases to be considered in this work
2.3.1 Normal Contact Law
For the static case the normal contact law can be determined by Hertz contact

theory or from experiments. However, for the dynamic case in which the load is of short
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duration, wave motion effects make it difficult to determine the contact law. In some of
our previous work (Sadd, et.al., 1989a), a static normal contact law has been modified for
use in dynamic cases. In general the normal contact law given by equation (2.5),
represents a variety of cases including both displacement and velocity dependent contact
forces. Velocity dependent damping acting like dashpots will produce energy dissipation
which is a needed ingredient to model real granular materials, and two forms of such
damping have been introduced in (Sadd, et.al., 1989): a local damping proportional to the
relative disk velocities, and a global damping proportional to the absolute velocities.
Likewise, a hysteretic normal contact law depending only on the relative displacements
will also produce energy dissipation. An appropriate contact constitutive law should have
both the correct stiffness to be able to model the proper wave velocities and the correct
dissipation mechanisms to accurately predict wave attenuation. Three specific cases
shown in Fig. 2.3a,b,c will now be presented o demonstrate some of these basic features.
a. Linear Normal Contact Law

If the assumption is made that there is no deformation out of the contact area and
plane strain conditions exist, then application of Hertz contact theory yields a static linear
contact law between the forces and the relative displacement of two disks in contact. If
it is further assumed that the dynamic contact stiffness is scalable from the static Hertz

value, then the normal contact law reads
F,=K,§, = K® 3§, (2.8)

where K, is the dynamic stiffness, o is a stiffness ratio which is determined from

experiments, and K ® is the static contact stiffness from Hertz theory given by

KSS) _ TthElEZ (2.9)
2(E +E)
with h being the disk thickness, and E, and E, being the elastic moduli of the disks in
contact. This particular contact law is shown in Fig. 2.3a.
Incorporating the distinct element method with this linear contact law required that

some forms of local or global damping be included in the model. For dry granular

materials the global damping can be neglected, and the local damping is taken to follow
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a simple linear law (linear viscous dashpot) of the form F, = C,v,, where C,, is called
a local damping factor. In order to collect calibration data to determine the values of o
and C,,, photoelastic experiments were performed on a single straight chain of disks. Fig.
2.4 illustrates typical photoelastic isochromatic fringe patterns of the wave propagation
at various instants of time for this simple configuration. Appropriate values for the
normal stiffness and damping coefficients were thus determined to match the data from
these calibration tests. In particular the normal contact stiffness value is primarily related
to the wave speed, and this stiffness value was therefore determined by matching the
model resuits with the velocity data (about 1010 m/s) from the experiments. In a similar
fashion, the local damping constant is related to the wave attenuation, and thus it was
found by matching the model results with amplitude attenuation data. The single straight
chain consisted of 40 Homalite-100 circular disks with 25.4mm (1 inch) diameter and a
6.35mm (1/4 inch) thickness which were explosively loaded. To simulate the experiments,
the theoretical nmodel input loading used a triangular time profile with a 60 us duration
and a peak value of 1000 N, and the time increment was taken as At = 2us. Values of the
stiffness and damping determined from the experiments along with the particle mass
density were K, = 6.4 x 10° N/m, C_, = 32 N s/m, and p = 1.2 x 10> Kg/m’.

Using these parameters, model predictions for the single straight chain are shown
in Figs. 2.5 - 2.7. The time profiles of normalized contact load at every fourth contact
point are shown in Fig. 2.5. It was observed that the linear stiffness law with linear
velocity dependent damping gave wave speed and amplitude results which generally
match with the experimental data (Sadd, et.al., 1989). However as illustrated in Fig. 2.5,
this model produces unrealistic wave form dispersion. The period of the original 60 Ws
input wave profile was lengthened to more than 200 pus during the propagation over 40
disks, and this phenomena was not found in the experiments. With damping removed
from the model the normalized contact load histories for every fourth contact point are
shown in Fig. 2.6, and it can be seen that this model also produced attenuation. Further
investigation showed that the attenuation for the case without damping is not due to any
net energy loss but rather it indicates that the model overpredicts the dispersion, thus
leading to a decrease in the peak contact forces. The potential, kinetic and total energies

in the straight chain assembly are shown in Fig. 2.7 for this case. It is seen that the total
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energy quickly becomes a constant value, and therefore the dispersion characteristics of
the model are creating the peak amplitude attenuation. With the high dispersion
associated with this model, the wave profile rapidly spreads producing an increasing wave
length with propagation distance. This characteristic is not consistent with our
experimental data, and thus indicates that a new model should be developed with a
nonlinear contact law.
b. Nonlinear Contact Law

Based on the above observations, a nonlinear contact law was constructed in an
effort to eliminate the highly dispersive characteristics of the previous linear model.
According to Johnson (1985) the relative displacement between disks in contact cannot
be determined by only considering the deformation near the contact point. Instead an
elasticity solution that considers the shape, size, and the way in which the disk is
supported is required. Johnson, using a superposition of Hertz theory, a uniform stress
field, and a point-loaded disk problem, derived a nonlinear relationship between the
contact force and the center-point displacement.

A simplified relation that appears to match with the approximate solution from

Johnson, is of the form

F, = 0,8 (2.10)

where o, and p are model parameters dependert upon the material and geometry of the
disk. Generally p > 1, thus providing a stiffness that increases with load, and this behavior
is shown in Fig. 2.3b.

Distinct element results for a single straight chain using this nonlinear model are
shown in Figs. 2.8 and 2.9. Fig. 2.8 shows the contact load history of every fourth
contact point for the single straight chain without damping. The values of ¢, and p are
chosen as 3x10® N/m'* and 1.4 respectively, so as to yield a wave speed that matches
with the experimental result. It is seen for this case that all contact loads, except the first
one, have the same shape and the same peak value, i.e. no dispersion and no attenuation.
The attenuation that exists at the very beginning of the chain is a result »f the

establishment of a stable wave motion from the input explosive source. Fig. 2.9




illustrates the attenuation behavior for the nonlinear case with linear velocity dependent
damping. Including such damping clearly again produces excessive dispersion, and since
we must have some form of damping in the model to correctly predict wave attenuation,
this particular nonlinear law cannot accurately predict the resulting wave forms and thus
must be modified.
¢. Nonlinear Hysteretic Normal Contact Law

It is apparent from the previous case that the nonlinear stiffness law with velocity
dependent damping will not correct the over-prediction of wave form dispersion.
Furthermore the basic issue of velocity dependent damping would indicate that some form
of viscous mechanism is present in the material. For dry granular media under study,
there does not seem to be physical evidence of such a damping mechanism.
Consequently, a different normal contact law is proposed which produces deformation
dependent damping through a norlinear hysteretic law accounting for different loading
and unloading behaviors. The basic concept is illustrated in Fig. 2.3c, in which the
unloading path lies below the loading curve and thus energy is lost during a cycle in
proportion to the amount of deformation of each disk. For this case the velocity
dependent damping (i.e. the dashpot) will be dropped from the model, and the normal

contact law would read,

F, =, d i, loading
R . (1)
F =3 F, = 0,00 . unloading, reunloading
F o =BF, + O-PF , .. reloading

If in the loading path the maximum value of the force is recorded as F, ., then the
reloading is defined as the state in which the load is increasing but its value is smaller
than F, .. The reloading pith will join the loading path at F, .. and additional loading

follows the origional loading path. The value of q is determined by

g =(A &0 2 (2.12)

A max

where A is a constant to be determined and 8, is defined as the value of 8, at contact

n max

point i when the normal contact force at the point has attained its maximum value. The

value of B is given by
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(OB O]
g - O 5"(‘“"‘ (2.13)
8Ell)'na)( - 6r:)min

with 8” is the current value of the relative normal displacement at contact point i, and
39, min indicates its minimum value in the previous unloading or reunloading path. At the
moment reloading begins, 3, = 8 . and B = 0. The value of B increases with 8, and

it reaches a maximum value of 1 when 8 = 8" . which indicates that new loading

n max
will begin. The values of a,, p, and A are related to material and geometric properties of
the disks, and will be determined from experimental calibration tests. The parameter o,
however, is determined in order to make the unloading path initiate at the peak point of
loading, see Fig. 2.3c.

Model results for the nonlinear hysteretic case consisted of simulations of the
single straight chain. Again the parameters needed in the numerical model were
determined from the experiments yielding: p = 1.4, A = 8500 m', o, = 3x10® N/m'*. With
these parameters, the numerical predictions matched well with experimental data for the
wave speed, wave attenuation, and the wave dispersion. These results will be discussed
in section 2.4.

2.3.2 Tangential Contact Law

To simulate the wave motion in two dimensional assemblies, both a normal and
a tangential contact law are required. The appropriate normal contact law was given by
equation (2.11). The tangential contact law is considerably more complicated and thus
more difficult to derive since the current value of the tangential contact force may depend
on its history and the amplitude of the normal contact force. In addition there could be
partial slip within the contact area. A tangential contact law proposed by Walton et.al.
(1991) will be used here with some modifications. The basic concept embedded in this
contact law is that the effective tangential contact stiffness decreases with an increase of
the tangential force, and goes to zero when full sliding occurs. The tangential contact is

thus written as,

FX = FY+KASY (2.14)
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where, F¥ and A3 are the tangential force and the relative tangential displacement
increment at the N-th time step, and K is the tangential contact stiffness which 1s given

by

Y
F, - F;
Kjl - " | e, AS, =0
F - F;
K =< " l (2.15)
! Y
F' - F
Kj1- AS, < 0
WF, + F/

L

Here, K, and y are constants to be determined, F, is current tangential force, and F,
which is initially set to zero, takes the value of F, when the Ad, changes sign. If the
normal force, F,, changes during contact, the value of F,” will be scaled in proportion to
the change in the normal force. Fig. 2.3d illustrates the relationship between F, and 9,
when F, is kept as a constant. In our numerical simulations, the values of K, ¥, and p
are set to 5x10° N/m, 0.3, and 0.5 respectively, such that the numerical results match with
the experimental data obtained in a two dimensional hexagonal close packing assembly
shown in Fig. 2.12.
2.4 NUMERICAL RESULTS
2.4.1 One Dimensional Cases

As a calibration, once again the single straight chain was used in the numerical
simulation, and a triangular time dependent impulse with a 60us period was used to
simulate the explosive loading in the experiments. Results from the distinct element model
are shown in Figs. 2.10 and 2.11. Fig. 2.10 gives the profiles of contact loads of every
fourth contact point versus time. The wave speed is approximately 990 m/s, the duration
of contact load at each contact point is about 93us, so the ratio of wavelength to disk
diameter is around 3.6. The experimental resuits gave a wave speed of 1010 m/s and a
ratio of wavelength to disk diameter of about 3.5. Fig. 2.11 compares the numerically
predicted peak contact load versus distance with the data from the experiments. The
numerical results match the experimental data quite well with difference less than 5%.

Both the numerical model predictions and the experimental data show that the attenuation
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1s larger at the contact points near the point of input loading. Also some dispersion
occurs near the explosive loading point, and this is probably due to the establishment of
the propagating profile from the explosive time input. It appears that the wave motion
signal needs to propagate a small distance in order to achieve a stable profile state.
2.4.2 Two Dimensional Cases

The distinct element method with the hysteretic normal contact law (2.11) and
tangential contact law (2.15) was used to modei wave propagation in several two
dimensional granular assemblies. In order to compare with experimental results, the same
disks and input loading were used as those in the one dimensional single straight chain
case.
a. Hexagonal Close Packing (HCP) Assemblies

One of the assemblies studied is the hexagonal close packing geometry shown in
Fig. 2.12. The disks in the close packed assembly have six contacts with neighboring
disks. Given in Table 2.1 are the numerical predictions for the peak normal contact forces
for cases both with and without tangential force modeling. As a comparison, the normal
contact loads from the experiments are also given in the Table. It is apparent that
including tangential contact interactions improves the results with a change of average
relative error from 14.5% to 11.8%. The maximum F, was recorded at the contact points
(disks #13 : #12) and (disks #14 : #15). The same assembly with a void is shown in Fig.
2.13, but the position and the direction of input loading have been changed. The void was
created by removing a disk from the assembly. Table 2.2 gives the distinct element
analysis results for this case. It can be seen that including tangential forces in the model
decreased the relative error of the normal contact loads especially around disks #28 and
#29 where significant tangential forces would be expected. Another HCP assembly with
three voids is shown in Fig. 2.14. Numerical predictions and comparisons are given in
Table 2.3. Again the tangential contact model improved the comparisons with the
experimental results especially at the contact points near the voids.
b. Irregular Assembly

An irregular assembly which was first used in the experiments is shown in Fig.
2.15. Due to the irregular packing geometry of the assembly, intergranular tangential loads

will exist at many contact points and will play a more important role than in the other
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assemblies previously presented. The comparison of numerical predictiors with
experimental results is given in Table 2.4. Without tangential contact forces the average
relative error of peak normal contact forces is 20.7% which is larger than those in the
HCP assemblies. Using the tangential contact force model, the error difference is reduced
to 14.5%. The maximum tangential loading occurs at the contact point between disk #19
and #29, and its value is about two times that found in the HCP assemt'y previously
discussed.

2.5 CONCLUSIONS

Three different normal contact laws have been incorporated into the distinct
element numerical code used to simulate the dynamic behavior of granular matenals.
These contact laws provide the basic microstructural constitutive behavior that governs
the way mechanical signals will propagate from particle to particle. The various laws
must account for the proper stiffness and damping characteristics to accurately predict the
wave speed and inter-granular wave attenuation/dispersion. The three cases included:
simple linear stiffness/linear velocity dependent damping; nonlinear stiffness/linear
velocity dependent damping; and nonlinear hysteretic behavior. Comparisons of the
numerical predictions with each other and with experiments were made for a simple
geometry of single disk chains of Homalite 100 material.

The linear contact law was simple to formulate, characterize and run, and it could
provide reasonably accurate values for the wave speed and amplitude attenuation;
however, it produces unreasonably high dispersion (wave profile spreading) than that
found in the experiments. Incorporating a nonlinear stiffness contact law, did provide the
means to reduce this excess dispersion; however, once velocity dependent damping was
added to this model the dispersion again became unacceptably high. Failing to see any
fundamental mechanism for velocity dependent damping for dry cohesionless granular
materials, the final contact model incorporated a hysteretic stiffness law where loading
and unloading contact responses were taken to be different. For this case the velocity
dependent damping was removed and the hysteretic law provided the necessary damping
to control and model the inter-granular wave amplitude behavior. The hysteretic model
appears to provide the best match with the experimental data for both the wave speed and

amplitude attenuation, and it predicts the proper dispersion characteristics observed in the
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expenments.

A tangential contact law originally proposed by Walton et.al. (1991) was included
with the nonlinear hysteretic normal contact law to predicte the wave propagation in two
dimensional granular assemblies. It is found that these contact laws work well and the
average relative errors between experimental data and predicted values were less than

15%.
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Table 2.1 Numerical predictions of the normal contact loads
of the assembly shcwn in Fig. 2.12

HCP Assembly ( Input on Disk #5 )

Contact Exp Numerical Model with F, Numerical Model without F,
Locaton | Normalized F | Normalized F | Relatve Emror % | Normalized F | Relatve Error %
5:13 1.203 1.357 12.8 1.301 8.1
13:21 1.000 1.000 0.0 1.000 0.0
13:22 0470 0.387 17.6 0.359 23.6
12:13 0.346 - 0.360 4.0 0413 19.4
11:12 0.240 0.257 7.1 0.309 28.8
10 : 11 0.206 0.195 54 0.242 17.5
20:21 0.385 0.265 311 0.306 20.5
19:20 0.253 0.207 18.2 0.260 2.8
22:30 0.403 0.383 5.0 0.341 154
21:29 0.620 0.740 194 0.780 25.8
29:38 - 0.176 - 0.178 13 0.209 18.8
30:39 0.258 0272 54 0275 6.6
30:38 0.316 0.370 16.8 0.322 19
29:37 0489 0.553 13.1 0.617 262
37:36 0.172 0.140 18.6 0.183 64
37:45 0.403 0417 36 0495 22.8
37:46 0.131 0.124 54 0.161 229
38:46 0.281 0.350 24.5 0.303 78
38 : 47 0.247 0.199 19.3 0221 10.5
39 : 47 0.244 0276 12.9 0270 10.7
46 : 54 0.307 0.327 6.4 0.283 7.3
Average Reladve Ermor % 11.8 14.5
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Table 2.2 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.13

HCP Assembly ( One Void, Input on Disk #35)

Contact Exp Numerical Model with F, Numerical Model without F,
Locadon | normalized F Normalized F Relative Error | Normalized F | Reladv Error
35:36 1.000 1.000 0.0 1.000 0.0
27:28 0.126 0.110 12.4 0.082 349
28 :29 0.268 0277 3.5 0.207 22.7
29 : 30 0.190 0214 12.6 0.162 14.7
30 : 31 0.140 0.164 173 0.131 6.4
20:21 0.126 0.174 378 0.172 36.5
35 :27 0.436 0422 3.1 0.425 2.5
27: 19 0.300 0.311 3.7 0.329 9.7
( 19: 11 0.252 0.239 5.1 0.269 6.7
36:28 - 0422 0424 0.5 0.471 116
28:20 0.356 0.373 4.7 0443 244
20:12 0.316 0.325 2.7 0.402 212
29 : 21 0.147 0.063 572 0.055 62.6
Average Relative Ermor % 123 200
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Table 2.3 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.14

HCP Assembly ( 3 Voids, Input on Disk #35) Jl
Contact Exp Numerical Model with F, Numerical Model without F, ]
hocatian Normalized F Normalized F | Relauve Error % Normailzed F | Relauve Emor %
35:36 1.000 1.000 0.0 1.000 0.0
27 :28 0.103 0.110 72 0.082 203
28 : 29 0.268 0277 3.5 0.207 2238
29 :30 0.190 40213 119 0.162 147
30:31 0.197 0.180 8.7 0.141 284
31:32 0.155 0.141 9.3 0.119 232
20:21 0.127 0.174 36.7 0.172 354
21:22 0.134 0.156 16.2 0.150 11.9
23 : 24 0.101 0132 30.8 0.125 233
12:13 0.120 0.119 1.0 0.141 17.5
13:14 © 0134 0.112 16.5 0.124 7.5
14 : 15 0.155 0.108 304 0.113 271
35:27 0437 0.422 33 0.425 27
27:19 0.300 0.311 3.7 0.329 9.7
19:11 0.254 0.240 5.9 0.269 59
36:28 0.423 - 0424 02 0.471 113
28: 20 0.359 0.373 38 0.443 234
20:12 0.310 0.325 47 0.402 297
29:21 0.148 0.063 57.5 0.060 59.5
Average Relative Error % 14.2 19.8
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Table 2.4 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.15

Random Assembly ( Input on Disk #1 )

Contact Exp Numerical Model with F, Numencal Model without F,
Locadn Normalized F Normalized F Relaave Error % Normalized F Relatuve Error %
1:2 1.000 1.000 0.0 1.000 0.0
2:5 0.762 0.678 11.2 0.668 123
5:10 0.507 0.432 14.8 0418 © 176
10 : 17 0.358 0.358 0.1 0.365 20
17 : 26 0.295 0.261 11.5 0.295 0.0
1:3 0.832 0.891 7.0 0.888 6.7
3:6 0.565 0.569 - 06 0.541 42
6:12 0.303 0292 3.8 0.274 9.6
12 : 20 0.218 0.176 19.2 0.201 7.8
20:31 0.256 0.135 473 0.184 28.1
5:11 0.303 0.224 26.1 0.371 224
11:19 0333 0311 6.5 0224 2.7
19:29 0.351 0.331 5.7 0.359 23
6:11 0.251 0.378 50.4 0.379 51.0
I1:18 0.259 0.316 21.9 0.331 278
18 : 27 0.229 0.264 15.1 0.297 29.7
2:4 0.620 0.545 12.1 0.583 6.0
4:9 0.534 0.448 16.1 0.465 129
9:16 0.331 0.305 79 0.323 24
9:17 0.182 0.238 30.7 0.345 89.6
3:7 0.500 0.526 5.2 0.570 14.0
7:13 0.433 n.426 1.7 0.468 8.1
13:21 0.347 0.326 5.9 0.383 10.4
18 : 28 0.140 0.158 12.7 0.198 414
Average Relative Ermor % 13.2 18.3
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(a) Linear normal coptact law (b) Nonlinear normal contact law
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(c) Nonlinear-hysteretic normal contact law  (d) Tangential contact law

Fig. 2.3  Particle contact laws

Fig. 2.4  Typical isochromatic fringes obtained from a single chain experiment
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Contact Load ( Normalized )

Fig. 2.5

Contact Load ( Normalized )

Fig. 2.6
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Energy ( Normalized )
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Fig. 2.9 Contact load VErsus time in a single straight chain (nonlinear normal contact
law with velocity dependent damping)
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Fig. 2.10 Contact load VETsus time in a single straight chain (nonlinear-hysteretic normaj
contact law)
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Fig. 2.12 A hexagonal close packing assembly
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CHAPTER 3

APPLICATION OF STRAIN GAGES TO STUDY CONTACT LOADS
IN GRANULAR PARTICLES

3.1. INTRODUCTION

The study of contact load and wave propagation in granular materials is of
importance in many areas of technology. These include powder metallurgy, earthquake
engineering and soil mechanics etc.. The granular materials, such as sand, rock and clay,
are often modeled as aggregate assemblies of disks or spheres interacting only through
contact mechanisms. Wave propagation and load transfer in such materials are strongly
dependent on their microstructures. An excellent review article by Deresiewicz (1958)
presents both static and dynamic studies pricr to 1958. Another more recent review article
by Krizek (1971) presents the dynamic response of cohesionless granular soils.

The concept of modeling granular media as an array of elastic particles (eg.
spheres or disks) lead to the initial attempts at predicting wave propagation through such
media. Early work by lida (1939), Takahashi and Sato (1949), Hughes and Cross (1951),
Hughes and Kelly (1952), Gassmann (1951) and Brandt (1955) employed a nommal
granular contact force concept. This initial work investigated the propagation velocity as
a function of confining pressure, particle size and aggregate geometry. It was discovered
however, that the classical theory of contact due to only normal forces, does not in
general accurately model real materials. With this in mind, Duffy and Mindlin (1957),
proposed a theory for granular media which includes both normal and tangential contact
loads. This theory produced a nonlinear and inelastic stress-strain relation. A considerable
amount of work has been done to try to determine the elastic constants of particular
granular assemblies, see for example, Hendron (1963), Petrakis and Dobry (1986,1988)
and Walton (1987).

With regard to experimental work, the method of photoelasticty has been
employed to study the behavior of granular materials. Photoelasticity was first used for
granular media by Drescher and De Josseling De Jong (1972), while later work includes
Derescher (1979) and Durelli and Wu (1983). This work was however only for the static

behavior case. Dynamic analysis of granular media employing photoelasticity was first
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reported by Rossmanith and Shukla (1982) and Shukla and Damania (1987). Later studies
by Shukla et. al. (1988a,1988b) further investigated the use of dynamic photoelasticity
using high speed photography to record wave propagation through various assemblies of
birefringent disks.

In this paper, strain gages were employed to study contact loads, wave propagation
and dynamic load transfer in granular media which was simulated using one and two
dimensional assemblies of circular disks. The strain gages were placed on disks to obtain
the two parameters namely, the half contact length b and friction factor B which control
the stress field near the contact point. Using this data the normal and tangential contact
loads were obtained by integrating the contact stresses along the contact length. By
putting the strain gages at different locations in the aggregate assembly of circular disks
the wave velocity and amplitude attenuation were also obtained. The static experiments
were conducted first and the experimental results showed good agreement with similar
results obtained from photoelasticity. Strain gages were then applied to dynamic contact
problem and the results again compared with dynamic photoelasticity.

3.2 THEORETICAL ANALYSIS

The problem of contact of elastic bodies under normal loading was first solved by
Hertz (1881). This problem was further studied by many researchers (Morton and Close,
1922, Thomas and Hoersch, 1930, Coker and Ahmed, 1921). The effect on the stresses
due to the presence of a tangential load, however was not taken into consideration by
investigators until 1939, when Lundberg (1939) developed a general theory of elastic
contact between two semi-infinite bodies. Mindlin (1949) investigated the distribution of
tangential load across the area of contact where one elastic body slides over the other.

Smith and Liu (1953) derived the equations for the stresses ©,,, G,,, ©

170 Mxxy Myys

and o,, at any
point around the cortact point. Shukla and Nigam (1985) used full field photoelastic data
to evaluate the contact stresses and the contact area by utilizing the least square technique
in conjunction with the Ncwton-Raphson method.

Fig.3.1 represents the cross section of a roller of elastic material that rests upon
a flat surface of a solid elastic body. The roller is subjected to a distributed load of W
Newitons per unit length, which presses it against the bodv over a long narrow area of

contact whose width is 2b. A lateral distributed load of f Newtons per unit length is also

54




applied to the body. Let B be defined as a friction factor such that f=BW. B will be the
coefficient of friction if motion impends. The distribution of the normal and the tangential
stresses will be assumed to be elliptical (Mindlin, 1949) as shown in Fig. 3.2. Smith and
Liu (1953) gave the equations for the stresses G,,. 0,, and ©,, for points close to the

contact. These equations are

b
Glz = —_ﬁ(z(b(b]_xcbz)‘{'Bzz(bz) (31)
b [ [b¥+227+2x? 2 2 39
Ou = —RA[Z( 5 ¢,—_b_—3xn2}[3((2x2_2b2_3z )0, (3.2)
2nX 2 a2 X
+ +2(b*-x*-z%)—0,
b
b z z
o, = —Hl:zzd)fB((b2+2x2+2zz)xg¢l-?th-3xz¢21| (3.3)

where ¢, and ¢, are defined as

0, = n(M+N) .0, - n(M-N)

MNY2MN + 2x2+222-2b?2 MNY 2MN +2x 2+272-2b?

M = y(b+x)?+2? N = y(b-x)*+z*
Pt -vi1 -V

A= +
Al TE E,

A=, 1
2| R

Subscripts 1 and 2 refer to the two bodies making the contact. R1 and R2 are radii of

curvature at the point of contact. E is the modules of elasticity and v is the Poisson’s
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ratio. The two unknowns in the stress field equations are b and . Other parameters
depend on the geometry of the bodies, location coordinates and material properties.
Therefore, two strain gages can be employed to find the two unknowns namely, half
contact length b and friction factor f.
3.2.1 Frictionless Contact Problem

At some contact points within the assembly of disks, the tangential contact load
is considerably less than the normal contact load (for example, in a single chain assembly
of circular disks). Thus, the friction factor § in the Hertz contact stress equations can be

considered to be zero. Then egs. (3.1), (3.2) and (3.3) become

o, = —%(bq;]-x@z) (3.4)
o bZ{buz?zxzm-%ﬂ*?’xﬂzJ (3.5)
T
bz?
g - - ¢2 (36)
X TtA

In the eqs. (3.4),(3.5) & (3.5), there is only one unknown, the half contact length £. From
the stress-strain relation of a plane stress problem we have
€, = 'l' (Gu -V oxx) 3.7)
E
In eq. (3.7) €,, is the strain value which can be obtained by using a strain gage located
at any position of x and z.
When two circular discs with the same radius R and the same material are in

contact, on the z axis, that is, x=0, the expressions for ¢,, ¢,, A, B and A can be

simplified as below:
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2R(1 - v9)
E

A=

Therefore the stresses G,,, 0,, and G,, will be further simplified as

6, = — (3.8)
Ay b2+ z2
2, 9 2

Op=- 2L 2 (3.9)
Ay b?+ Z2?

c._ =0 (3.10)

Substituting eq. (3.8) & (3.9) into eq. (3.7) results in the following expression

1| - wv)b?-2vz? 2vz
= - +

“ E A
A Vb? + Z2

£

(3.11)

In eq. (3.11) g, is the strain value from the strain gage and the half contact length b on
the right side of the equation is the only unknown. Thus, if the strain gage is placed at
x =0 and some distance z away from the contact point, then the half contact length b can
be determined numerically as follows. Move the right side of eq (3.11) to the left we have

a new function f(b) as below

f(b) = ¢, + é(o” - vo) (3.12)

For a given value of strain g, say, €, = -3000 microstrain, f(b) will be zero for some
value of b. This b will be the correct half contact length correspondent to the given strain.
To find this b we can plot f(b) as a function of b starting from zero (since half contact

length b cannot be negative), as shown in Fig. 3.3. It can be seen from Fig. 3.3 that b is
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about 0.93 mm for g,, = -3000 microstrain.
3.2.2 Contact with Friction

When the tangential contact load is not negligible B has to be obtained to
determine the stress field around the contact point. Thus, there are two unknowns b & f3
and two strain gages have to be used to solve them.

At first, an attempt was made to solve this problem using a two-element
rectangular rosette. This two-element rectangular rosette can be placed at any location of
x & z with an orientation angle 0 (see Fig. 3.1). The stress-strain relations can be

expressed as below:

1
£, = = (©
X

z

- vo,) (3.13)

E'XX = "L (G‘xx - vc'[[) (3.14)
E 4

where ¢,,” and o, are the transformed stresses (the corresponding coordinatey shown in

Fig. 3.1) and they can be writien as

G,, = ©,sin’® + G, cos’0 + 2 o, sinBcosO (3.15)

0 = 0,050 + G, sin"0 - 20, sinBcosd (3.16)

Where ©,,, 6,, and ©,, are given in eqs. (3.1),(3.2) & (3.3). By substituting eqgs. (3.15)
& (3.16) into eqgs. (3.13) & (3.14), one gets

b e, 2 2
= - {(sm 6 -vcos 9)[z(b¢,—x¢2)+Bz ¢2]

ntEA
2,9,2,9,2
+(c0526—vsin26)[z(.b_+;zb_i

2nX

727

2n
-2 -3x0,
o, : 0,

X

bq)'

+2(b%-x?-2?%)

+B((2x2—2b2—3zz)¢2+

+2(1 +v)sin9c059[zz¢2+[3[(b2+2x2+2zl)%¢]Jn%-.?xz%ﬂ}

(3.17)




€ s {(COSZO—Vsin%)[z(w,-x¢2>+322¢2]

nEA
2,952, 92
+(sin26—vcosze)|iz(2_:%_+_'i_¢,—_2b£—3x¢2

2mX
b

+B((2x2-2b2—322)¢2+ +2(b2—x2—22)%¢1}

-2(1 +v)sin9cosel:zz¢2+B((b2+2x2+2zz)%¢ -2 %—3)(2(1)2]}

(3.18)

It can be clearly seen that b & P are coupled in the nonlinear system of eqs. (3.17) &
(3.18). The correct solutions of b & B are quite dependent on the accuracy of the two
strains €,,” & €,,” at the same time. If a two-element rectangular rosette is placed at x=0
the strain values of €,,’ & €, are not very sensitive to B. Various other placements of
the rosettes did not yield satisfactory results and therefore, after initial tries the two-
element rectangular rosette was dropped as an option.

Careful observation of eqs. (3.1) and (3.2) shows that when x is zero, the stresses
o,, and o,, are independent of P since ¢, will also be zero. Thus, the half contact length
b found from eq (3.11) is independent of B. Therefore, for the friction problem, one of
the twe strain gages can still be placed at the location described in the frictionless
problem to find b. Once b is known, B will be the only unknown and can be simply
solved using eq. (3.17). In eq. (3.17), €,,” is the strain value from the second strain gage
which is placed at the location of coordinates x & z away from the contact with an
orientation angle 9 (refer to Fig. 3.1 & 3.4).
3.3 EXPERIMENTAL PROCEDURE AND RESULTS

The applicability of the theoretical equations developed in the previous section for
the experimental determination of half contact length, b, and friction factor, B, was next
verified. The experiments involved measurements of strains using strain gages at points
in the vicinity of the contact of two circular disks. The half contact length, b, and friction
factor B, were then obtained from the measured strains through eqs. (3.11) and (3.17).
The experimentally obtained values of b and B using strain gages were compared with the

values obtained through photoelasticity technique developed by Shukla and Nigam (1985).
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The disk material used in the present investigation was a birefringent brittle
polyester material, Homalite-100, whose mechanical and optical properties are well
characterized. The elastic constants and the experimental model geometry are shown in
Fig. 3.4. The disk diameter was 65-mm and its thickness was 12.7-mm. The strain gages
used in the experiments were 0.4-mm long and 0.4-mm wide and were manufactured by
Micromeasurement Inc., U.S.A. The location (vertical position, z, horizontal position, x
and orientation angle, 8) of the strain gages were decided after a careful consideration of
the strain field around the contact so that the error in strain measurement is minimized.
3.3.1 Selection of Strain Gage Positions (x & z)

Fig. 3.5 shows the strain €, as a function of the normal distance z from the
contact for various values of half contact length b. It can be seen that steep gradients in
the strain exist near the contact point. As the distance normal to the contact point
increases the strain gradients reduce and the strain profiles become almost flat after z=4
mm. Thus it is important that the strain gage be placed beyond z=4 mm so as to minimize
the average error due to strain gradient. On the other hand, Hertz contact stress equations
are valid for a distance approximately not more than 86 from the contact point. Typical
half contact length was about 0.6 mm - | mm. Thus to meet the above constraints the
strain gage must be placed at a distance between 4 mm to § mm from the contact point.
In this investigation z=5 mm was chosen for the first strain gage placement.

In order to find the friction factor P the second strain gage has to be placed at
a position where the strain should be sensitive to the value of the friction factor B. Fig.
3.6 shows the strain distribution of €,, along z=5 mm cross section for various values of
B and b=1 mm. It is found that the strain €,, becomes sensitive to P after x=4 mm. Thus
the location of the second strain gage was chosen to be z = 5-mm and x = 5-mm.
3.3.2 Selection of Strain Gage Orientation (0)

It has been shown previously in eq. (3.11) that the strain €,, from the first strain
gage with orientation angle 8 = 0° is only related to the half contact length b. Thus the
two unknowns b and B in Hertz contact stress equations are uncoupled. To take the
advantage of this the orientation angle 6 for the first strain gage was chosen to be 0 =
0°.

The strain €,,” from the second strain gage is plotted as a function of orientation

60




angle in Fig. 3.7. This Fig. shows that the second strain gage should be oriented at 45°
to obtain maximum sensitivity with regard to friction factor f. For a 0.1 difference of the
value of friction factor, the variation of strain can be as high as 180 microstrain (b = 1
mm). Thus the orientation angle for the second strain gage was chosen to be 6 = 45°.
3.3.3 Effect of Strain Gage Size

Since the strain gage has a finite size it averages the strain over its grid area.
Therefore the measured strain will be different from the value of the center of the gage.
This average error may be defined as (g, - €,,)/e, where €_ is the strain at the center of
the gage grid and €,, is the average strain over the entire grid area. €,, was obtained by
taking average of strains calculated at 121 points uniformly spread (11 X 11) over the
entire gage grid area. Fig. 3.8 shows the average error for different gage lengths but a
fixed aspect ratio of L/W = 1. The figure shows that if the gage length L is less than .5
mm the average error will be smaller than 1%. Thus the strain gage EA-06-015CK-120
with L = W = 0.4 mm was used in this study.

Thus, all the details about the location and orientation of the strain gages were

finalized and are as follows:

First strain gage Second strain gage
Vertical position, z=5mm z=5mm
Horizontal position, x =0 mm X =5mm
Gage orientation, 6=0° 0 = 45°
Gage length, L =04 mm L =0.4 mm
Gage width, W = 0.4 mm W = 0.4 mm

Theses value of different parameters were used for the actual measurements.

3.3.4 Strain Measurements and Determination of Half
Contact Length & Friction Factor

3.3.4.1 Static Loadings

The experimental model shown in Fig. 3.4 was used for the measurement of
strains and for the determinatior of half contact length and friction factor for static
loadings. Two strain gages were mounted near the contact point at the locations and
oricntations given above. The disk (shown in Fig. 3.4) was loaded in the Instron machine.

The strains from the two strain gages were recorded while photoelasticity technique was
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employed simultaneously for comparison. The half contact length and triction factor were
then determined using eq. (3.11) & (3.17). The values of half contact length and friction
factor obtained from both the strain gages and photoelasticity for different loads are
shown in Fig. 3.9. It was found thot the values from the strain gages agree very well with
the result from photoelasticity.
3.3.4.2 Dynamic Loadings

Dynamic loading was achieved by detonating a small mount of explosive on top
of the experimental model. Since the wavelength of the loading pulse is much larger than
the disk size there is quasi-static loading around the contact zone during the wave
propagation event (Shukla and Damania, 1987). Thus, the static Hertz contact theory stll
can be used for the dynamic case. The dynamic strain recordings shown in Fig. 3.10
were substituted into eq. (3.11) & (3.17) to find the half contact length and friction
factor. Fig. 3.11 shows the half contact length b increase and decrease with the passage
of the wave while the friction factor keeping a constant around 0.25. The experiment with
same geometrical arrangement and loading condition was repeated utilizing dynamic
photoelasticity and high speed photography. Four out of twenty pictures are shown in Fig.

3.12 and the experimental results are plotted in Fig. 3.11.
3.3.5 Application of Strain Gage Method to Wave Propagation in Granular Media

Several strain gages were mounted at different locations in a single chain model
consisting of 100 Homalite-100 disks with one inch (25.4 mm) diameter and 1/4 inch
(6.35 mm) thickness as shown in Fig. 3.13. The typical dynamic contact strain protiles
as obtained from strain gages are shown in Fig. 3.14. From these strain profiles the wave
velocity, wave length and wave amplitude attenuation can be found as follows.
3.3.5.1 Wave Velocity

From the recorded strain profile data., wave velocity was calculated using the

equation below

V =

L (3.19)
t

where V is wave velocity, L is the distance between any two strain gages and t 1s the

travelling time of the wave from strain gage 1 to strain gage 2. The wave velocity also
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can be found by plotting the wave front as a function of time from all the strain gage data
as shown in Fig. 3.15. The slope in Fig. 3.15 gives the wave velocity which is about 987
m/s for thi, experiment. This wave velocity is almost same as the one obtained by Shukla
Damania (1987) using dynamic photoelasticity and high speed photography.

3.3.5.2 Wave length

The wave lei:gth A can be obtained from the equation
A=VT (3.20)

where T is the wave duration which is the width of the strain profile. It was tound that
the wave length A is about 100 mm which again compares well with dynamic
photoelasticity results.
3.3.5.3 Wave Amplitude Attenuation

As mentioned before, the dynamic contact load can be obtained from the strain
gage data. This load was obtained and is plotied as a function of pr(;pzlgziti()nal distance
in Fig. 3.16. Due to the internal losses within the granule, energy spent in closing the
contact and some frictional and reflection effects, the peak contact load decreases
continuously as the wave propagates through the model. For a normalized propagational
distance of X/D = 50 ( X is the propagational distance and D is the disk diameter), this
load drop is around 50%.
3.4. SUMMARY

A simple experimental procedure is developed to study static and dynamic contact
loadings in granular assemblies. Theoretical equations for the strain field in the vicinity
of the contact point between two disks are critically evaluated to obtain the optimum
orientation and location of the strain gages to find the half contact length b and friction
factor B. The comparison of experimental results from strain gage and photoelasticity 1s
quite good for static loading as well as dynamic loading. Application of this strain gage
method to wave propagation in granular media also shows good agreement between the
results from strain gage technique and dynamic photoelasticity. The high speed
photography systems are generally limited to few discrete points and field of view

<

whereas the strain gage technique has no limit in time and space. Thus. the strain gage

technique has a tremendous potential for appl~ation in the arca of wave propagation in
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granular media, especially for those cases where the wavelength of the loading pulse is

long and in cases where the granular assembly size is large.
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CHAPTER 4

EFFECTS OF PARTICLE SIZE AND LOADING AMPLITUDE
ON WAVE VELOCITY

Experiments were conducted to study the velocity with which mechanical signals
propagate in a granular media. In particular, the dependence of this velocity on the size
of the granules as well as the wave amplitude was investigated. A numerical study was
also conducted to compare with the experimental results.

4.1 INTRODUCTION

This study primarily deals with the effects of particle size and the amount of
explosive, on the stress wave velocity. Both the strain gage technique and dynamic
photoelasticity were employed to obtain the wave velocity and its wavelength in a one-
dimensional, relatively large-sized granular medium. The granular medium was simulated
with a single chain of circular disks fabricated from Aluminum and Homalite 100,
respectively. Different size disks, with diameters ranging from 6.4 mm to 76.2 mm (refer
Table 4.1) and thickness 6.4 mm, were used in this investigation. The wave velocity
obtained by both methods was found initially to increase with the increase of the disk
diameter and then gradually approached a constant value. The wavelength monotonically
increased with the increase of disk diameter.

4.2 EXPERIMENTAL PROCEDURE

Two groups of experiments were conducted using the strain gage technique and
dynamic photoelasticity. For the strain gage experiments, the circular disks were
fabricated from both Aluminum and Homalite 100 with disk diameters ranging from 6.4
mm to 76.2 mm. For the dynamic photoelasticity experiments, the disks were fabricated
from Homalite 100 with diameters ranging from 6.4 mm to 71.1 mm. These disks were
arranged in a single chain assembly as shown in Fig. 4.1. The assembly was lnaded by
exploding a small charge of explosive (LEAD AZIDE). The explosive was contained in
a specially designed charge holder which was placed on top of the assembly. The stress
wave generated by this loading was monitored either by strain gages or dynamic

photoelasticity.
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4.3 EFFECT OF PARTICLE SIZE ON WAVE VELOCITY

In this part of study, the disk diameter varied from 6.4 mm to 76.2 mm. However,
the explosive amount was kept constant ( 10 mg Lead Azide ) for all experiments.
4.3.1 Strain-Gage Technique

Two types of strain gages were used for this investigation. Strain gage CEA-
06032UW-120 was used for larger size disks (25.4 mm diameter or above) and strain
gage MA-06-008CL-120 was used for disks under 25.4 mm diameter. In each experiment
two strain gages were bonded respectively on the center of two different Aluminum disks
as shown in Fig. 4.1. The distance between the two strain gages was kept at 3 disk
diameters in all the experiments. The first strain gage disk was located at least 4 disks
away from the explosive so that the wave form was fully developed before reaching the
gages. The strain gages were connected through an Ectron Model R513-5SG-16 dynamic
amplifier to a Nicolet Digital Oscilloscope. A typical strain profile obtained in one of the
experiments is shown in Fig. 4.2,

From the recorded experimental data, wave velocity was calculated using the

equation below

V =- 4.1

t
where V is wave velocity, L is the distance between the two strain gages and t is the

travelling time of the wave from strain gage 1 to strain gage 2. The wavelength A was

then obtained from the equation

A=VT (4.2)

where T is the wave duration (see Fig. 4.2).

The results obtained from the strain gage experiments are shown in Table 4.1.
These results indicate that the wave velocity increased by almost 46% as the diameter was
increased from 6.4 mm to 12.7 mm. Further increase in the disk diameter did not seem
to affect the wave velocity. The variation of wave velocity as a function of disk diameter
is shown in Fig. 4.3. The wavelength of the loading pulse showed a monotonic increase
with the disk diameter as shown in Fig. 4.4, The reason for this is that in larger disks.

reflected waves have to travel longer distances before coming hack to the contact point.
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This keeps the contact loaded for more time and as such produces larger wavelengths. It
is interesting to note that the ratio of wavelencth to disk diameter almost stays constant
when the diameter is varied from 19 mm to 76.2 mm. This, in our opinion, is the reason
why the wave velocity does not show a change for different disk diameters in this range.
4.3.2 Dynamic Photoelasticity

A multiple-spark-gap camera was used for dynamic photoelastic experiments. The
one dimensional disk assembly was put in the optical bench of this camera. The camera
was triggered at some prescribed delay after igniting the explosive and provided 20
photoelastic images at discrete times during the dynamic event. A typical sequence of 8
images for a single chain assembly of Homalite 100 disks with 25.4 mm diameter is
shown in Fig. 4.5. These discrete images of the wave propagation phenomenon were
enlarged using a Beseler enlarger. The wave front was digitized using the Hicomscan
digitizer interfaced with an IBM personal computer. Thus the wave propagation distance
as a function of time was obtained and a typical plot is shown in Fig. 4.6. The slope of
this plot gave the wave velocity. The wavelength X can be measured directly from the
photographs of the wave propagation process shown in Fig. 4.5.

A series of experiments were conducted using dynamic photoelasticity and the
experimental results are listed in Table 4.2, The wave velocity as a function of disk size
is plotted in Fig. 4.3. It was found from Fig. 4.3 that the wave velocity for 6.4 mm disk
is about 570 m/s while the ratio A/D is around 11. When the disk diameter was increased
to 9.5 mm, the wave velocity increased to 950 m/s. With the further increase of disk
diameter, the wave velocity only increased slightly and approached a constant velocity of
about 1100 m/s. The wavelength on the other hand monotonically increased with the disk
diameter as shown in Fig. 4.4. Again like the aluminum disk experiments, it is interesting
to note that velocity seems to be controlled by the ratio of A/D in Homalite 10 disk
experiments also.

The advantage of using dynamic photoelasticity is that the wave propagation
process can be completely seen in the whole field. The photographs obtained from the
experiments, showed that when the stress wave propagated inside the disk its wave front
normally took the shape of the disk. Even in large size disks (71.1 mm), the body P and

S-waves and the surface Rayleigh wave were not observed (except in the disks very close
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to the explosion). The wave propagation in a granular medium is governed by contact
mechanisms and the wave velocity is found to be much smaller than the dilatational wave
or shear wave velocity.
4.4 EFFECT OF LOADING AMPLITUDE ON WAVE VELOCITY

A series of experiments were conducted using strain gage technique to study the
effect of loading amplitude on wave velocity. The experimental setup is shown in Fig.
4.7. The disks were made of Homalite 100 with one inch diameter and four CEA-
0632UW-120 strain gage were placed at four different disks as shown in Fig. 4.7. To
obtain different loading amplitude various amount of explosive (Lead Azide) were used
namely, 5, 10, 20, 30, 40, 50, 100 mg respectively.

Typical dynamic strain profiles obtained during the experiments are shown 1n Fig.
4.8. Since the strain gages were placed near the contact equation (4.4) was used to find
the half contact length b. The contact load P was then calculated using the equation below

given by Boresi (1978)

p - T hb? (4.3)
2 A

Table 4.3 and Fig. 4.9 show the time of peak contact load occurring with different
values of loading amplitude. It was found that with the increase of the peak load the
stress wave took less time travelling from the explosion source to strain gage location.
From the strain gage data the wave velocity were computed using a least square method
and are listed in Table 4.4. The wave velocity in Fig. 4.10 shows about 14% increase
from 940 m/s to 1070 m/s as the peak contact load increased from about 1000 to 5000
newton. Any attempt to increase peak contact load further by using mcre explosive
resulted in the damage of disks and the straia gages.

The increase in wave velocity found from the experimental results can be
explained as follows. Firstly, the larger contact load produced larger contact area and this
made it easier for the wave to propagate from one particle to another one. Secondly,
Homalite 100 is a strain rate sensitive material and the greater wave amplitude with the
same wave duration resulted in a larger effective elastic modulus and correspondingly

higher velocity.
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4.5 NUMERICAL INVESTIGATION OF THE EFFECT OF
PARTICLE SIZE ON WAVE MOTION

The distinct element method with a nonlinear-hysteretic contact law was also used
to study the effect of granular size on wave motion. The input loading used was a
triangular time dependent form with a duration of 20us, and the parameters needed for
calculation are given in Table 4.5 and 4.6. The numerical results of A/D and the wave
speed V are shown in Tables 4.5 and 4.6, and it is observed that the wavelength increases
with the diameter of the disk. When the disk diameter D<25.4 mm, the ratio of
wavelength to disk diameter, A/D, decreases with D: however, it remains almost a
constant after D>25.4mm. The distinct element results are compared with the
experimental data in Fig. 4.11. Reasonably good agreement was found between theory and
experiments for the prediction of the wave speed in single disk chains composed of
different sized disks.

It is interesting to note that the values of a and b do not change with the ratio A/D,
and thus A/D does not affect the hysteresis directly, though it will influence n and the
ratio 8“.. When A/D decreases the value of n that represents the nonlinearity increases,
and a similar behavior is noted for the parameter o, . With the distinct element method,
the wave motion is determined by the input loading, contact stiffness which is a function
of n and oy, and the mass of disk. Thus it is felt that when the ratio A/D is subject to
change both the particle geometric characteristics and the mass of the particle will have
influence on the wave motion, but when A/D is a constant the wave motion predictions
will be influenced primarily by the inertia characteristics.

4.6 CONCLUSIONS

The results obtained using the experimental techniques of strain gages and
dynamic photoelasticity, along with the numerical predictions from the distinct element
method show that

(1) The wave velocity in granular medium initially increases with an increase of
disk diameter and then approaches a constant velocity with further increases of disk size.
This constant velocity is around 40%-50% of the wave velocity in a solid bar of the same
material. Similar results were obtained by lida (1939) who showed that wave velocity in
granular materials was much lower than the wave velocity in bulk material,

(2) The wavelength increases monotonically with the disk diameter.
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(3) The velocity with which dynamic signals can propagate in granular media is
dependent on the ratio of wavelength to disk diameter A/D. For larger ratios of A/D, there
are more contact points under one wave pulse, resulting in reduced stiffness of the disk
chain. Therefore, as A/D increases the wave velocity drops as shown in Fig. 4.11. Clearly
as the diameter becomes very large, A/D will approach zero and the wave velocity will
reach the body wave velocity.

(4) The wave velocity increases slightly (about 14 %) with the loading amplitude.

(5) The distinct element numerical results matched well the experimental findings

and specific model stiftness variations as a function of A/D were determined.

Table 4.1 Results from Single-Chain Strain Gage Experiments
with Varying Disk Diameter (Aluminum)

Disk Diamcter Dimm) Wave Velocity V(m/s) Wave Length A(mm) A/D
6.4 1410 63 99
12.7 2060 74 5.8
19.0 2285 8S 4.5
254 2275 102 4.0
31.8 2095 126 4.0
38.1 2220 159 4.2
44 8 2050 174 4.0
50.8 1970 203 4.0
57.2 2040 212 37
63.5 2005 263 4.1
76.2 1940 291 3.8

# The wave velocity in a solid Aluminum bar is about 5090 m/s.
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Table 4.2 Results tfrom Single-Chain Photoelasticity Experiments

with Varying Disk Diameter (Homalite 100)

Disk Diameter Dimm) Wave Velocity V(m/s) Wave Lergth A(mm)
6.4 570 70
9.5 950 67
12.7 995 80
254 1070 91
31.8 1150 96
38.1* 1240 102
50.8* 1350 114
71.1 1130 227

* Results from reference [8] (different tvne of explosive used).

A/D

11.0
7.0
6.3
3.6
3.0
2.7
2.3
3.2

# The wave velocity in a solid Homalite 100 bar is about 2100 m/s.

Table 4.3 Distance from explosion v=. arrival time
Input peak load time of peak contact load
P (Newton) d=132 mm d=157.4 mm d=182.8 mm d=208.2 mm
960 t=165us =191 s t=221 pus =245 us
1870 t=153 us =178 us =206 ps =233 s
2500 t=150 us =175 pus =200 us =225 s
3840 t=139 us =164 pus =188 us =213 us
4430 =140 ps =163 s t='88 us =213 s
4900 t=140 us t=164 ps =188 us =211 s
5440 =138 us =162 s =186 us =209 us

* P is the peak contact load obtained from strain gage 1.
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Table 4.4 Wave velocity due to various loading amplitude

Input peak load Wave velocity

P (Newton) v, v,
960 939 nys 800 1/
1870 947 my/s 863 m/s
2500 1004 m/s 874 m/s
3840 1032 my/s 950 my/s
4430 1040 m/s 943 m/s
4900 1072 m/s 943 m/s
5440 1072 my/s 957 m/s

* 'V, obtained from four strain gages.
V, obtained by dividing the distance of the first strain gage  to explosive by the
arrival time of peak contact load.

** P s the peak contact load obtained from strain gage 1.

Table 4.5 Parameters used for Homalite- 100 and numerical results

D(mm) o n a b AD v(my/s)
6.35 2.8x10° 1.03 0.5 0.05 7.5 577
9.525 1.5x10° 1.1 0.5 0.05 6.0 953
12.7 310 1.15 0.5 0.05 5.4 1016
25.4 6x10° 1.4 0.5 0.03 3.6 1080
31.8 7x10° 1.4 0.5 (0.05 3.0 1100
71.12 Ix10° 1.4 0.5 0.05 3.0 1129

Table 4.6 Parameters used for Aluminum disks and numerical results

D(mm) o n a b A/D v(m/s)
6.35 4x10) 1.03 0.6 0.02 7.1 1420
12.7 6x10° 1.2 0.6 0.02 4.7 2020
19 5.5¢10° 1.35 0.6 0.02 4.0 2260
25.4 1x10" 1.4 0.6 0.02 3.8 2180
44.8 1x10" 1.4 0.6 0.02 3.9 2036
50.8 1x10" 1.4 0.6 0.02 38 1992
76.2 1.1x10" 1.4 0.6 0.02 38 1917
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Fig. 4.1 Strain gage experimental setup for a single chain of Aluminum disks

Strain  ( pm/m -

200.
7 wave duration
100. — i
0 . — :. ...'-._..‘_ = ,.;.., ...... yetbatts __"’::‘ o ey et - -'-'M“\T’.J." T2
AN o4 "-\. ._/"
~100. —, e
- travelling time
~-200. — ' -
—300. —
—400. T T T I T T T T T
0. 100. 200. 300. 400. 500.
Time ( pus)

Fig. 4.2 Variation of strain with time at two different aluminum discs (disc
diameter D=76.2 mm)
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CHAPTER 5

INFLUENCE OF LOADING PULSE DURATION ON DYNAMIC LOAD
TRANSFER IN A SIMULATED GRANULAR MEDIUM

An experimental and numerical investigation was conducted to study the dynamic
response of granular media when subjected to impact loadings with different wave
lengths. The granular media was simulated by an assembly of circular disks arranged in
a long straight single chain. The dynamic loading was produced by impacting a projectile
from a gas gun onto one end of the granular assembly. It was found from the experiments
that an input wave with a short period (about 90 us) will propagate in this granular media
with a steady amplitude attenuation. However, the long wave (period about 650 ps to 900
us) will propagate through this granular media with first an increase of amplitude (up to
40% higher than the input) which is ther followed by a decrease of amplitude. In
addition, oscillation behavior was found within the main wave pulse indicating significant
dispersion of the input signal. Thus there exists a fundamental change in the local
propagational behavior of waves in granular media for waves with different wave lenzth.
5.1 INTRODUCTION

The study of wave propagation in granular materials 1s important to many
branches of science and engineering including geomechanics and powder metallurgy.
Dynamic loads may occur due to earthquake motion, underground explosions, and
construction operations. The ability to predict the behavior of structures and foundations
necessitates the understanding of wave motion in granular media such as sand, rock, and
clay. In addition, granular powders are of great importance to the forming of many solid
materials which are frequently sintered by either static or dynamic compression of
powders. Such sintering processes are associated with load transfer and flow of granules.
Granular materials, having spatial discontinuities in their mass density, are modeled here
as an array of elastic particles interacting only through contact mechanics, and wave
propagation in them is strongly dependent on their microstructures. A sizeable amount of
work has been done to study wave propagation in granular materials from a
microstructural standpoint. Some of the earliest work is due to Ida (1939) who used a

simple lumped mass-spring system. Contemporary work has proposed new modeling
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approaches such as the fabric tensor theory (Nemat-Nasser and Mehrabadi, 1983), the
distributed body theory (Goodman and Cowin 1972), and the distinct element method
(Cundall, et.al., 1979) in order to predict the behavior of granular media.

Experimental techniques, such as the method of photoelasticity, have been
employed to study the dynamic response of granular materials under explosive loading
(Rosmanith and Shukla, 1982, and Shukla and Damania, 1987). Later studies by Shukla
et.al.(1988b) using high speed photography further investigated the effects of defects,
granular size, and branch angle on wave propagation caused by explosive loading in
granular materials. Combining experimental techniques with numerical interpolation and
the superposition principle, Zhu et.al (1989) used an experimental-numerica’ hybrid
technique to predict the contact forces between granuies in various assemblies.

The distinct element method is a computational scheme, which uses Newtonian
rigid-body dynamics on each particle to simulate the wave motion in granular media. The
intergranule contact mechanics are represented by assuming the granules to have a
particular stiffness and damping. In this way an explicit numerical scheme is developed,
and the wave motion in a large aggregate assemblies of granules can be simulated. This
method has been applied by various authors (Sadd, et.al., 1989b, 1991 and Trent, 1989).

Using experimental techniques and the distinct element method, the effects of
wavelength (or equivalently loading period) on the wave propagation in granular media
are discussed in this paper. In the experiments, the model assembly consisted of a long
straight single chain of circular discs. The simple one-dimensional assembly was chosen
in order to eliminate the effect of variable direction load paths on the current wave length
study. The impact loadings were produced with a projectile from a gas gun, as shown in
Fig.5.1. High speed strain gage instrumentation was used to record the dynamic strain
profiles caused by impact loadings. Hertz contact theory was used to convert the strain
profiles into contact load profiles. In the computational study, the distinct element method
was used to investigate the wave motion in the same assembly used in the experiments.
Based on previous work, a nonlinear hysteretic contact law is used in the modeling.
Results obtained from both experiment and computation indicate that the granular media
acts like a nonlinear wave guide, propagating mechanical signals with significant

dispersive characteristics. In one dimensional granular media, the dispersive phenomenon
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depends on the relation of the wavelength to the particle size. For long wavelengths, wave
propagational behavior shows significant differences from that for short wavelengths.
5.2 EXPERIMENTAL PROCEDURE AND RESULTS

The experimental method used in this study utilized electrical resistance strain
gages to record the dynamic strain profiles as the stress wave passes through the granules.
The experimental arrangement is shown in Fig. 5.1. The one dimensional granular media
consists of 100 circular disks fabricated from Homalite 100 with 25.4 mm diameter and
6.35 mm thickness. The strain gages were bonded on the disks about 5 mm away from
the contact point. Around the contact point Hertz contact equations are valid (Shukla,

1987). Since there is negligible friction, the stress field equations can be expressed as

below
b 2
ozz - —ﬁz—(b¢1_x¢ﬁ) ) Glx = - i ¢2 (51)
nf np
o = - bz (b2+222+2x2¢]_E__»zan)2 (5.2)
x nB{ b b

where ¢,, ¢, and B are defined as

_ t(M+Q) _ t(M-Q)
¢| - H q)g
MQ\/EMQ+2X""+212—2b2

MQ\/?.MQ+2)(2+?_Zz—2b2

b _y?
B = ﬂ%ﬂ , M = y(b+x)'+2? , Q = y(b-x)'+z?
where R is the radius of the disk, v is Poisson’s ratio, and E is the elastic modulus. For

a plane stress problem, we have

7z

€ = _l_(cs”—vo“) (5.3)
E :

If the strain gage is placed along the z-axis, that is, x = 0, the expressions for ¢,, ¢, and

B can be simplified and finally Eq.(5.3) can be written as
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In Eq.(5.4) €, is the strain value from the strain gage and the half contact length b on the
right side of the equation is the only unknown. Thus, if the strain gage is placed at x =
0 and some known distance z away from the contact point, then the half contact length
b can be obtained numerically. Once b is found the stress field can be determined and
then the contact load can be obtained by numerically integrating the contact stresses along
the contact length. In this study the strain gages were bonded on the disks 5 mm away
from the contact points.
Short input loading

A series of experiments were conducted using the gas gun by placing an aluminum
cap in front of the aluminum bar as shown in Fig. 5.1. The first strain gage was bonded
on the first disk and the other three strain gages were put at various positions. Fig.5.2
shows the strain gage output due to impact loading from one of the experiments. The
wave velocity was found to be around 987 m/s. The input loading pulse at disk 1 (shown
in Fig. 5.2) has a duration of about 90 ps. It was found that the wave amplitude (peak
inter-granular contact force) decreased steadily with propagational distance (see Fig.5.6).
The wave shape remains similar with propagational distance indicating small geometrical
dispersion. These results are very similar to those found by Shukla and Damania (1987)
with explosive loadings.
Lcng input loading

To obtain a longer wavelength, a rubber type material PSM4 with 6.4 mm
thickness was directly placed before the Homalite 100 disk chain before the impact from
the gun. The duration of input loading was about 650 us as shown in Fig. 5.3 (strain gage
output at disk 1). The wave velocity was found to be around 950 m/s. Different from the
short duration impact loadings, the wave amplitude was found to first increase and then
decrease as shown in Fig. 5.6. In addition, the individual granules (disks) contribute to
a ringing behavior, producing oscillations within the main wave pulse (see Fig. 5.3). By
carefully observing the time interval between the oscillation peaks in given pulse it was

found that this time interval increases with propagational distance. The first three time
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intervals between peaks in one pulse were averaged and plotted in Fig. 5.4. It can be
clearly seen from Fig. 5.4 that the time interval increases from 63 ps at disk 7 to 102 ps
at disk 100. From tnis tendency of time interval increase it was found that this long
period input wave tries t¢ separate into many short waves with a time duration of around
100 ps. After the wave separation the amplitude then seems to decrease steadily. The
phenomenon of increase in wave amplitude for this long duration loading can be
explained by the tendency of the input wave separation. During the process of the wave
separation, the leading portion of the wave gathers more energy which results in the
increase of amplitude. The separated short waves seem to have a specific wave length
which gives the ratio of wave length to disk diameter of about 4. This specific ratio was
also found by Xu and Shukla (1990) for disks of 25 mm diameter or larger. These results
imply for this material that there exists a specific ratio of wave length to disk diameter
for which the wave propagation in the single chain is stable.

Additional cxperiments were conducted with long period impact loadings. Fig. 5.5
shows the typical strain gage output for 200 us input wave duration. Wave separation
phenomenon similar to that shown in Fig. 5.3 were also found in these experiments. For
this case the wave amplitude remains almost constant for the entire propagational
distance. The peak contact loads as a function of propagational distance are plotted in Fig.
5.6. From Fig. 5.6, the transition behavior of wave amplitude with the increase of wave
length can be clearly seen. With the increase of input wave length to 900 us, the
maximum wave amplitude increases up to about 1.5 times the input wave amplitude. This
amplitude transition phenomenon can be explained by the fact that the longer duration
waves carry more energy than shorter duration waves. Thus, when the main wave
separates to many short waves the leading short wave can have shorter duration and
higher wave amplitude.

5.3 NUMERICAL RESULTS

The distinct element method was used to theoretically investigate the effects of
wavelengtl on the wave propagation in the one-dimensional granular assembly used in
the experiments. This numerical me.hod models the behavior of granular assemblies
through Newtonian rigid-body mechanics. The interaction between granules is determined

by a particular interaction or contact law and a damping relation. The interaction forces
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are related to relative displacements and velocities of the granules in contact, and the
granules (disks) are allowed to overlap each other to represent contact deformation. In
addition, the distinct element technique discretizes the time period during which the wave
propagates into a series of time intervals. Each interval is chosen so small that during a
single time step disturbances can not propagate from any disk further than its immediate
neighbors, thus the granule accelerations and velocities can be considered as constants
during a given step. Using a simple forward difference formula the increments of relative

normal and tangential displacements can be written as
Ad, = v,At = [(v, - vy)=n]At
Ad, = VAL = [(v, - vyt - (OR, + ®,R,)]AL

where v, ®,, and R, are the velocity, angular velocity, and radius of disk 1, with like
notation for disk 2. The terms n and t designate normal and tangential contact unit vectors
respectively, and they are shown in Fig.5.7 for disk 1. §, and v, denote the relative
normal displacement and velocity between adjacent disks in contact whereas 8, and v, are
the relative tangential values. The interaction law between adjacent disks can be written
as

F,=F(,.v,), F =F.w.Wd,.v,) (5.6)

where F_is the normal contact force. and F, the tangential contact force. Using Newton's

law, the acceleration for each particle is determined by the relation

a=2xXF/m. (5.7

Once the acceleration is known, the velocity follows by using the simple ditference

equation

v = aAt (5.8)
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Equation (5.5) may be used to determine the disk displacements, and then new contact
forces may be determined for the next time step using relations (5.6). In this way, the
distinct element method develops an explicit numerical scheme which can be used to
study the dynamic behavior of large assemblies of granules.

Previous studies have considered various forms for the contact law (Sadd et.al,
1991, 1992b). A nonlircar-hysteretic contact law was found to be more appropriate than
other attempted laws in that using this law the predicted wave amplitude, wave shape, and
wave velocity agreed best with experimental results. Therefore a nonlinear-hysteretic

contact law 1s adopted in this work, and is expressed as

F,=0,8] i loading o
5.
Fo=1 F =08 s unloading, reunloading (59
F,=mF,+ (-"MF, .... reloading

and is shown in Fig. 5.8. Here loading indicates that the force reaches its maximum value
in its history and is still increasing, and reloading is defined as the state in which the load
is increasing but its value is smaller than its maximum value. The value of q is

determined by

g (A 89 (5.10)

-
n max)L

where 8% .. is defined as the value of §_ at centact point i when the normal contact
force at the point has attained its maximum value and A is a constant to be determined

The value of 1 is given by

(O )
n - 6n 6rlmln (511)
6(:)max - 6:)min

with 8% is the current value of relative normal displacement at contact point i, and

3", min indicates its minimum valuc in the previous unloading or reunloading path. At the
moment reloading begins, 8§, = 8, . and n = 0. The value of 1 increases with 8%, and
it reaches maximum value of 1 when 8", = 8", .. which indicates that new loading will

begin.

The value of o, and A are related to material and geometric properties of the disks
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and period of input loading, énd p is a parameter of the disk geometry. The parameter o,
however, is determined in order to make the unloading path initiate at the peak point of
loading as shown in Fig. 5.8. The chosen numerical values of ¢, A, and p are given in
Figs.5.9, 5.10, and 5.11. The experimental impact input loading was digitized as the input
loading for numerical simulation.

The numerical results from the numerical model are shown in Figs. 5.4, 5.9, 5.10,
5.11, and 5.12. Fig. 5.9 shows the contact load histories at three different points for a
short period loading (90 ps). The wave amplitude decreased monotonically with the
distance that wave propagated. The wave dispersion is small which matches with the
experimental results shown in Fig 5.2. The dynamic responses of the granular assembly
to long period loadings show significant differences from the results in Fig 5.9. In Fig.
5.10 three contact load profiles at different contact points are given for the case of a 650
Us input. Like the experimental results, within a wave profile a ringing phenomenon is
observed, and wave separation can be observed in the 2nd and 3rd wave profiles. The
amplitudes of the ringing oscillations decrease with propagational distance whereas the
time intervals of the oscillations increase. The average values of the first three time
intervals of each wave profile are compared with experimental results in Fig. 5.4. Similar
ringing behavior can also be observed for the cases with 200 us (see Fig. 5.11) and 900
us period input loadings. The normalized peak contact loads of the 90, 200, 650, and 900
Hs input are presented in Fig. 5.12. From this figure it is found that, in contrast to the
short input loading case ( 90us ), the peak contact loads here are not always smaller than
the value of the input loading. Instead of decreasing monotonically the peak contact loads
first increase with propagational distance, and then they begin to decrease steadily. For
650 ps input case the maximum contact load is about 1.56 times of the maximum input
loading.
5.4 DISCUSSION

It is apparent from our studies that for wave inputs with periods greater than
approximately 200 s, the original smooth input signal will suffer severe dispersion as
it propagates along the granular chain. In essence, the chain acts as a nonlinear wave
guide, and thus the input signal will undergo significant changes in shape. The increase

in amplitude and the resultant ringing behavior shown in Figs. 5.3, 5.5, 5.10, and 5.11
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indicate that the wave energy is being rearranged within the profile due to the
microstructure of the chain. In order to attempt to analyze this phenomenon, we consider
the behavior of the N-disk system from the viewpoint of a standard modal analysis. In the
following discussion the subscript n has been dropped for conciseness.

Using §,,,, to denote the deformation between the i-th and (i+])-th disks, R the
radius of the disks, and u; and uj,, the absolute displacements of the i-th and (i+1)-th
disks, then 8, ,, = 2R - (u,, - u). For a system of N disks in contact, according to

Newton’s law, we have

my =F . -2F +F (5.12)

1+l -1,4 [NTS! 11,142

where m is the disk mass, and F,,,, the contact force between disks i and (i+1) which

equals K9, ,,, . The stiffness K follows from Eq. (5.9) to be

K = 1.4Q/4Foans (5.13)

Eq. (5.12) can be linearized as

(5.14)

1,041 el t+l, 02 )

" K
5 = 0( Sl—lt_z6 +8
m '

by using K, = L4a'™'F*, .. where F,... is a constant, and represents the average

value of F. For N disks in contact, we thus have the system

A+ ﬁA A=0 (5.15)
m

where A = (8, ,, 8,5, &4, ... 8y, \)'. and A is a tridiagonal matrix given by

2 -1
-1 2 -1

-1 2 -1
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The associated eigenvalue problem of relation (5.15) reads as

(A-AIH)X =0 (5.16)

There are N-1 eigenvalues of Eq.(5.16), which give the contact resonance frequencies o,
i=1, .. N-1), where

o2 = AKy/m (5.17)

The normal mode X related to w is the solution of Eq.(5.16) with A = A,. The response

of the system will be the superposition of the N-/ modes:

N-1
A= X CX,
i=1

Initially when the wave propagates along the chain, at the beginning, there are
only two disks in contact, and thus there is only one natural frequency ®* = 2K/m. At
later times the number of the disks in contact increases until it reaches a certain number
(about 28 for 650 ps input loading). Thus all the eigenvalues for the system from N = 1
to N = 28 were calculated. After a careful check, it was determined that all systems with
even numbers of disks in contact have the eigenvalue, A = 2. No other eigenvalue has
such a property. In Fig. 5.13 the normal modes corresponding to A = 2 are presented for
systems with an even number (2k) disks in contact. In the figure dots stand for the
amplitude of deformation between disks. The dot above the centerline means that two
disks approach each other (deformation increases), and therefore the contact load is large.
The dot below the line represents that two disks tend to separate (deformation decreases),
and contact load is small. It is clear from Fig. 5.13 that the mode for k = 2 is a part of
the mode for k = 3, and the mode for k = 3 is a part of the mode for k = 4 and so on.
Hence once the mode related to A = 2 is stimulated when N = 2k, it will be retained when
N = 2(k+1), and with k increasing this mode will gradually predominate over the other
modes. So the approximate resonant frequency of the system will be @ = 2K/m.

Consider now the period of the resonance, 1. With o = 1.7X10°* N/m'* and F
= 1000 N, A =2 gives T = 100.0 ps. If F

average

= 500 N, then t = 107.8 us. These values

average
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are close to the experimental results. The mode for k = 3 is a complete repeatable
structure for the higher modes shown in Fig. 5.13, and it was found out that the distance
between the two points with large contact load is four disks. Therefore when the
resonances of the system corresponds to A = 2, the wavelength will be of four disk
diameters, which also agrees with experimental results.

It should be point out that the previous analysis has been carried out after the
linearization of Eq.(5.12). The actual system, however, has nonlinear hard springs.
According to nonlinear vibration theory, higher amplitudes are associated with higher
resonance frequencies, which can be observed in Figs. 5.3 and 5.10.

5.5 CONCLUSION

Experimental and numerical results indicate that the granular media acts as a
norlinear wave guide, propagating mechanical signals with significant dispersive
characteristics. For one-dimensional granular chains, the dispersive behavior depends on
the relationship of the wave length to the particle size and material. For very short
duration input loadings (90 ps), the wave amplitude decreases steadily with propagational
distance. However, for longer duration loading, the amplitude is found to first increase
and then decrease. Moreover, for loading durations of several hundred microseconds or
more, individual granules (disks) contribute to a ringing behavior, producing oscillations
within the main wave pulse. This oscillation was found to persist, thus separating the
single input wave into many waves with shorter durations. Hence there exists a
fundamental change in the local propagational behavior of waves in granular media for
waves of varying wavelength. The ringing is found to be associated with the contact
resonance. It should be noted that the observed dispersion behavior is also a “vaction of

the particle size (disk diameter).




Gas Gun

2 Ye 38
’

Cap

78 s w0 M

ALl

Aluminum Bar

—

LeCroy Digital Storage Oscilloscope

Swrain Gage

T 1 11
| Ectron Dynamic Amplificr l

1 L

k)()OQ

]

Normalized contact strain, e/ 4

Fig.5.2 Normalized strain gage

\rr\‘po@l cﬁ)— o0

Fig.5.1 Experimental setup of impact loadings

20
1.8
1.4

1.2

1.0

0.8
0.6
0.4

0.2

T

Disk 1

0.0

N

Input wave duration about 90 us

0 200

400

Time, t (us)

96

1000 1200

1400

output in a 1-D chain of Homalite-100 discs




20

18 Input wave duration about 650 ys
LIRS
w
® 4 b 21 60
£ 42
g 12
o Disk 1
§ 1.0
& 8
8 08
3
N 0.6
=
g 0.4
(<}
z 0.2

0.0 1 | ok L b e} /\’\/\/—*

0 500 1000 1500 2000 2500
Time, t (us)

Fig.5.3 Normalized strain gage output in a 1-D chain of Homalite-100 discs

120
100 o a
80
& i
2
’_
— 60 I~
©
2
2
£ 40
® Input wave duration about 650 us
E | 0 Experimental
20 o Numerical
0 !} ] 1 1
0 20 40 60 80 100

Normalized propagational distance, X/D

Fig.5.4 Time interval between peaks in one pulse for various locations

97




3 14
'E‘ Input wave duration about 200 js
w 12
E Disk 1
.% 1.0 A Disk 21 Disk 42
% o8 H Disk 60
£
€ 06 [
8
L) 04 It
@
'—g 0 2 b f\
5 .
E 00 { Y (VAN
2 o 500 1000 1500 2000 2500
Time, t (us)

Fig.5.5 Normalized strain gage output in a 1-D chain of Homalite-100 discs

Input wave duration

Normalized peak contact load, P/P, max

® 90 pus
0.4 r— ® 200 us
¥ 650 us
02 | o 900 ps
0.0 ] 1 1 | | L L 1 ]
0 20 40 60 80 100

Normalized propagationai distance, X/D

Fig.5.6 Normalized peak contact loads as a function of propagational distance for
different input wave durations

98




Nomma! contact force

Fig.5.7 Schematic of disk interaction

Y

Normal relative displacement 5

Fig.5.8 Schematic of normal contact law

99




2.00
? 1.80
e
a 1.60
3
o 1.40
a 120
c
Q
S 1.00
x
g
2 o080
ped
& oe0
T
E 0.40
o]
< 020
0.00

Fig.5.9 Normalized contact loads in a 1-D chain of Homalite-100 discs (numerical)

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60

0.40

Normalized peak contact load, P/P na

0.20
0.00

Fig.5.10 Normalized contact loads in a 1-D chain of Homalite-100 discs (numerical)

Input wave duration about 90 us
a,=26x108m' A=4000m' p=14

Disk 1
25
43 50
1 1 L e T —
200 400 600 800 1000 1200
Time, t (us)

1400

Input wave duration about 650 us

ay =17x10°Nm'™* A=1700m" . p=1.4

21
42
\ 60
Disk 1
I oS 1 — L
500 1000 1500 2000 2500
Time, t (us)

100




2.00
§ 1.80 F Input wave duration about 200 ps
A- L a, =1.9x 108 Nim'* A=1700m", p=1.4
a 160 |-
-o' -
3 1.40
8 120 |
g -
(3] 1.00 I i
x Disk 1 21
@ 0.80 42
o 60
®
N 0.60 : /\
= A
S e /\ 1 \
O
000 1 I} 1
0 500 1000 1500 2000 2500
Time, t (us)

Fig.5.11 Normalized contact loads in a 1-D chain of Homalite-100 discs (numerical)

2.0
Input wave duration
3 18— 4 190 us
E 6 L 2200 s
3650 us
1.4

4900 us
1.2

1.0
08
06
04
02

Normalized peak contact load, P/P

20 40 60 80 100

Normalized propagational distance, X/D

Fig.5.12 Normalized peak contact loads as a function of propagational distance for
different input wave durations (numerical)

101




Fig..5.13 Normal modes corresponding to A = 2 for systems with 2k disks(relative motion)
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CHAPTER 6

ROLE OF PARTICLE SHAPE AND CONTACT PROFILE ON THE
DYNAMIC RESPONSE OF PARTICULATE MATERIALS

Experimental and numerical studies have been conducted to investigate the effect
of particle shape and particle surface roughness on inter-granular load transfer, velocity
and wavelength of a stress wave transmitted through granular media subjected to
explosive loading. Dynamic photoelasticity was used as the experimental technique to
study stress wave propagation through granular media simulated by assemblies of
elliptical and circular particles with varying surface roughness. Numerical studies
employed a computational scheme based upon the distinct element method. Results
indicate that the shape of the particle affects both the velocity of the transmitted stress
wave pulse and the load transfer characteristics. The wavelength shows no appreciable
dependency on the particle shape. Particle surface roughness seems to affect the load
transfer characteristics and the wave length, and to a limited extent, the wave velocity.
6.1 INTRODUCTION
This experimental and numerical study attempts to investigate the influence of particle
shape and particle surface roughness on the dynamic response of granular materials. Using
granular media simulated by circular disks with smooth surfaces (Rossmanith and Shukla,
1982, Shukla and Nigam, 1985, Shukla and Rossmanith, 1986, Shukla and Damania,
1987, Sadd, et.al., 19893, Xu and Shukla, 1990), experimental and numerical techniques
have been previously used to study the load-transfer, wave velocity and wave dispersion
characteristics for various loading parameters and packing geometries, However,
modelling a granular media using such particles has the following limitations:

(1). Particles in actual granular media are not necessarily circular.

(2). In gereral a granular medium can have more or less number of contacts per

particle than those for circular disks.

(3). For non-circular particles the contact normal vectors may not pass through the

centers of the particles in contact.

(4). Real life particles may or may not have smooth contact surfaces.
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In this study, particle shape was controlled by using elliptical particles of different shapes
and sizes. The ellipse was chosen since it provides a simple scheme to introduce particles
with an oblong shape. and a circular particle can be treated as a special case of an ellipse
with an aspect ratio of one. For surface roughness studies circular disks with varying
surface roughnesses were used to simulate the granular media.

6.2 EXPERIMENTAL PROCEDURE AND ANALYSIS

The experimental setup comprised of various assemblies of Homalite-100 particles
which were loaded by exploding a small amount (10-15 mg) of Lead Azide in a specially
designed charge holder. Figure 6.1 shows one such single chain setup used for simulating
one dimensional granular media using elliptical particles. A Cranz-Schardin multiple
spark-gap camera was used to capture 20 separate photoelastic images of the dynamic
process, at predetermined timings. A typical sequence of 5 photographs for one of the
single chain setups is shown in figure 6.2. These images capture the wave propagation
process at discrete time frames and can be used to provide data for determining contact
loads, wavelength and velocity for the transmitted stress wave pulse. Dynamic
photoelasticity was chosen as the experimental technique as it provides full field
information and enables one to see the shape of the stress wave front, as it propagates
down the granular assembly.

The elliptical particles were routed out of Homalite 100, a photoelastic material.
The template used for routing was machined out of aluminum using a CNC milling
machine. The routing was carefully monitored so as to avoid producing any heat related
residual stresses in the material.

To separate the effect of particle shape and particle size the single chain
experiments were designed so that the number of contacts per unit length remained
constant while the aspect ratio was being varied. Thus, while varying the aspect ratio of
the elliptical particles within a set of comparative experiments, the axis length along the
direction of wave propagation was kept constant and the other axis length was varied. See
figure 6.3 for a definition of the particle width, length and aspect ratio.

Rough particles were fabricated from 1" (25.4 mm) diameter Homalite- 100 disks
by roughing the surface with a band saw. The disks were later heat treated to remove any

residual stresses. Root mean square value of the edge variation of the disk from a mean
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value was taken as a measure of the surface roughness (Johnson, 1985". Moreover, the
thickness being small, this value of roughness was assumed to be uniform across the
thickness. Replication of the same roughness on several disks was achieved by using the
same band saw blade.

The photoelastic images were enlarged using a Besseler enlarger and data was
collected with a Hicomscan digitizer linked to an IBM PC-AT. Contact load calculation
at a particular contact and time was done by assuming a local Hertz contact stress field
and applying the multi-point, non-linear least square method developed by Shukla and
Nigam (1985). Data of the wave propagation distance as a function of time was used to
obtain the stress wave velocity. The average velocity was calculated using a linear least-
square fit through the experimental data points. The wavelength A of the stress wave pulse
can be measured directly from the photographs of the wave propagation process as shown
in figure 6.2. It can also be calculated using the duration of contact at any given contact
point and the average velocity of the stress wave.

6.3 NUMERICAL MODELLING

The distinct element method was used to model stress wave propagation in
granular materials. This method, originally proposed by Cundall and Strack (1979) for the
static case, has been applied to dynamic load transfer processes in granular materials by
various authors (Sadd, et.al., 1989, Walton, et.al., 1991, Trent, 1989). The distinct
element method uses Newtonian rigid-body mechanics to determine the motion of each
particle in the granular medium. The interaction between particles is governed by a
particular interaction or contact law, and this law plays a dominant role in overall material
behavior. The interaction forces are related to relative displacements and velocities of the
particles in contact, and the particles are allowed to overlap with each other to represent
contact deformation. Also, the time period is discretized into a series of time intervals.
The velocity and displacement of each particle can be obtained from its acceleration using
a finite difference scheme. The time step is chosen to be small enough so that in a single
time step disturbances cannot propagate any further than the immediate neighbors of the
particle in question. Thus the particle accelerations. velocities, and displacements can be
determined explicitly during a given time step. Referring to figure 6.4, using a simple

forward difference formula the increments of relative normal and tangential displacements
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can be written in terms of velocities as

Ad, = v, At = [(v, + ®, x R, - v; - 0, x Ry)*n]At
(6.1)
Ad,

VAL = [(v, - v, + @ X R, - 0, x Ry)et[At

where v, ®,, and R| are the velocity, angular velocity, and the distance between the mass
center and the contact point of particle 1, with like notation for particle 2. The vectors n
and t designate normal and tangential contact unit vectors, 8, and v, denote the relative
normal displacement and velocity between the adjacent particles, and §, and v, are the

relative tangential values.

Generally the interaction contact law between adjacent particles can be written as

F,=F(@,v,), F =F®,v,0,v,) (6.2)

where F, and F, are the normal and tangential contact forces. Using Newton’s law, the
acceleration a and the angular acceleration o for each particle are determined by the

relation

a=F/m, a=M/I (6.3)

where F and M are the resultant force and moment on the particle, m is the mass of the
particle, and I is the moment of inertia of the particle. Once the accelerations are known,

the velocities follow by using the simple difference equation

Av = aAt Aw = 0At (6.4)

Equation (6.1) may be used to determine the particle displacements, and then new contact
forces may be determined for the next time step using equation (6.2). In this way, the
distinct element method develops an explicit time-stepping numerical scheme which can
be used to study the dynamic behavior of large assemblies of particles. Figure 6.5
illustrates a typical computer flowchart of the distinct element numerical routines.

It is obvious that the wave propagation is directly related to the process of load

transfer between particles. Thus the contact law which governs the load transfer is
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important, and studies of various contact laws have been conducted (Sadd, et.al., 1992).
These studies have shown that a nonlinear-hysteretic contact law as shown in figure 6.6
provided the best comparisons with experimental data for granular materials simulated by

assemblies of circular disks. Therefore this contact law is used here, and it is expressed

as
Floo= a0 s loading 6.5)
F = F,.u = 000 unloading, reunloading '

BF + (1-BYF ,, . reloading

If in the loading path the maximum value of the force is recorded as F, _,., then reloading

is defined as the state in which the load is increasing but its value is smaller than F

n max:*

The reloading path will join the loading path at F and additional loading follows the

n max?

original loading path. The value of q is determined by the relation
g =(A 87y (66)

where A is a constant to be determined and 8, ., is defined as the value of §, at contact

n max

point i when the normal contact force at the point has attained its maximum value. The

value of B is given by

(1) 0]
Ss = Bamn 6.7
(1) (1)
6" max 8’! min

where 8®, is the current value of the relative normal displacement at contact point i, and
3V . indicates its minimum value in the previous unloading or reunloading path. At the
moment reloading begins, 8, = 8, . and B = 0. The value of B increases with 8, and

n min

reaches a maximum value of 1 when 8 = 8% . which indicates that new loading will

n max
begin. The values of o, p, and A are related to material and geometric properties of the
disks, and are determined from experimental calibration tests. The parameter o,
however, is selected to make the unloading path initiate at the peak point of loading, see
figure 6.6.

The distinct element method with the nonlinear-hysteretic contact law has been
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used to simulate the wave propagation along a single straight chain of elliptical particles.
A triangular time dependent impulse with 1000 N maximum load and 60 ps period was
used to simulate the explosive loadings used in experiments. The time step was chosen
as 2 ps, ard the parameters used for various cases are given in Table 6.1.

6.4 RESULTS AND DISCUSSION

6.4.1 Effect of Particle Shape.

Four different single chain setups were used, with contacts at 25.4 mm intervals.
For the four chains the width of the elliptical particles was increased from 12.7 mm to
38.1 mm while the length was kept constant at 25.4 mm. Thus, single chain granular
assemblies were constructed with varying particle shapes but a constant contact interval.
Figure 6.7 shows the plot of distance propagated by the wavefront as a function of time
for the single chain of 12.5 x 25.4 mm ellipses. The average velocity obtained from the
slope of this plot is also shown. Average wave velocities obtained from the four different
single chain setups are listed in Table 6.2. As the particle width was decreased from 38.1
mm to 12.7 mm the wave velocity was seen to increase from 950 m/s to 1250 m/s. The
wave speeds predicted by the distinct element method are listed in Table 6.1, and the
numerical values agreed with experimental data to within 5%.

Increasing the particle width increases the radius of curvature at the contact point
which influences the contact stiffness. If the radius of curvature at the contact point is
increased while keeping the contact interval constant the contact stiffness increases, which
would imply a higher wave velocity. The increase in contact stiffness as the particle width
is increased was also reflected by the increase in the o, parameter, as given in Table 6.1.
However, as the width of the particle increases, the particle mass per unit length also
increases and this tends to reduce the wave speed. An approximate equation for the speed
of a stress wave propagating in one dimensional granular media is given by Takahashi
and Sato (1949).

I ¢ (6.8)
m

where d is the distance between the centers of two particles in contact, K is the contact

stiffness, and m is the mass of the particle. For the cases studied, the distance d was kept
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constant at 25.4 mm, and the mass was given as,

m = npabh (6.9)

where @ and b are the half major and minor axes of the elliptical particle, & is the
thickness, and p is the density. From the nonlinear contact law, neglecting damping, the

stiffness can be expressed as a function of the contact force F and the parameter o, ,

K = Lda "4po (6.10)

The stiffness reaches its maximum value of K, when the contact force is maximum at
Fux- Assuming a linear variation of force F with time, and the same peak contact force

F . at every contact point, the average stiffness of each contact point is given as,

K() — 0.5aL1/l.4Fmax0.4/l.4 (61 1)

The ratios of Ky/m for the different particles are listed in Table 6.1. The peak contact
force between particles 3 and 4 has been taken as F_,,. It is seen that K/m decreases as
the particle width is increased, which emphasizes the predominance of the particle mass
over the contact stiffness in influencing the wave speed.

Table 6.2 lists the wavelength, A, of the transmitted stress wave pulse as it traveled
down the single chain assembly. The wavelength showed no appreciable change as the
particle aspect ratio was changed. Earlier experiments done with circular disks (Xu and
Shukla, 1990) have shown that changing the length of the particles changes the velocity
and the A/D ratio, where D is the contact interval (i.e., the particle length). In this set of
experiments the A/D ratio remained constant, as expected, as the particle width rather than
the particle length was being changed.

Photographs obtained from the experiments also showed how the stress wavefront
took the shape of the particle, as shown in figure 6.8. Figure 6.9 shows the change in the
fringe width with the fringe length of the wavefront fringe contour as the stress wave

propagates down any given particle. Near the contact area the fringe width and the fringe
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length were nearly equal for all the different particles and the fringes were circular. This
conforms with the Hertz contact theory which predicts circular fringes (Shukla and
Nigam, 1985). Further down the particle the free boundary effects become prominent and
the particle shape influences the shape of the wavetront fringe contour, as seen in figure
6.8. Wave propagation through a granular media occurs by contact mechanisms which
result in load transfer from particle to particle. Within a particle, however, the wave
propagation process is through a reflection mechanism, and each particle acts as a wave
guide. The stress wavefront observed is a resultant of the various reflection of the stress
wave from the free boundaries of the granular particle. For a wider particle the time taken
by the stress wave to reach the sides and reflect back would be more than for a narrower
particle, leading to a broader wavefront and a lower wave velocity.

Data from the various single chain assemblies was used to determine the normal
contact loads at different contact points. Figure 6.10 shows the typical normal contact
load variation for a single chain assembly. The contact loads, F, were normalized with
respect to the peak contact load occurring between particles 4 and 5, viz. F 5, particle
numbers being counted from the top down. This contact was chosen for normalization
because at this point the wave had travelled through four particies, i.e. one wavelength,
and thus had stabilized. This normalization allows for easy comparison between different
experiments (Shukla and Damania, 1987). The normalized contact loads for the 25.4 mm
(1") diameter circular disk chain were available from earlier experiments done using
circular disks (Shukla and Damania, 1987).

Normalized contact load plots provide information about load or wave attenuation
as the stress wave travels from contact to contact. They also provide information about
the duration of contact which can be used along with the wave velocity to give the
wavelength of the transmitted stress wave pulse. Figure 6.11 gives the contact load
attenuation plots for the various elliptical particles as the stress wave traveled down the
singic chain assembly. Again, the peak contact loads, F,,,, were normalized to allow
direct comparison. As shown the load attenuation increased with the width of the elliptical
particles. For a wider particle the stress wave had to travel through more material for the
same distance of propagation. This resulted in increased material dispersion for particles

with greater width, as seen in fignre 6.11. Values for peak contact load attenuation, as
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obtained from the experiments, are also listed in Table 6.2. The numerical distinct element
predictions are also shown in figure 6.11, and these numerical results generally agreed
with the experimental data to within 5%. It should be noted that the distinct element
model requires that different values of the model parameters oy and A be used for each
of the different particle shapes. This is related to the fact that the contact mechanics
behavior of each of these cases will change due to the surface radius of curvature, and
the internal wave propagation paths within the particle. Wider particles also produce
longer internal wave propagation paths within the particle, and this leads to an increase
in the attenuation characteristics of the particle. This agrees with the increasing values
of the A parameter in Table 6.1 since this parameter is related to the hysteresis associated
with the contact law.

6.4.2 Effect of Particle Surface Roughness.

Experiments were conducted to study stress wave propagation through single chain
assemblies of circular Homalite 100 disks of roughness 0.01 mm and 0.022 mm. Prior to
the dynamic experiments, static loading experiments were done to test the applicability
of the Hertz contact laws and to determine a validity zone for the governing equations.
Figure 6.12 shows two rough disks under compressive loading. From the static
experiments, it was found that the Hertz contact laws were valid for 2b<r<8b, where ‘r’
is the radial distance from the contact point and ‘b’ is the half contact width. During
dynamic wave propagation in disks, the wavelength of the loading pulse is several times
the disk diameter, hence the loading is essentially quasi-static (Rossmanith, 1982).
Therefore, all the experimental data for analysis was collected from this zone.

Figure 6.13 shows the plots of distance propagated by the wave front as a function
of time for single chain assemblies of circular particles of roughness R, = 0.01 mm and
R, =0.022 mm. The average velocities obtained for the two cases of roughness were 1020
m/s and 950 m/s, the velocity decreasing as the roughness was increased. Due to the
brittle nature of the rough edges, crushing of material at the contact zone occurred as the
wave passed which was also corroborated by the debris obtained at the contact zone. This
resulted in a decrease in stiffness at the contact. Moreover, as the roughness is increased
more free boundary is created, which results in increased scattering of the wave at the

free surfaces of the particle. Hence the wave suffers more reflections within the particle




and the group wave velocity decreases. This accounts for the decrease in average wave
velocity as the particle surface roughness is increased.

Figure 6.14 shows a plot of the normalized contact loads as a function of time.
The dotted lines on the curves show the extrapolation that has been done based on the
position of the wave as determined from the photographs. The peak contact load did not
show an attenuation as was the case with the smooth disks. The contact stiffness of the
rough edges was different for different contacts and this resulted in the absence of any
continuous attenuation in the value of the peak contact load as was seen in figure 6.10.
Crushing of the rough edges as the wave passed through the contact caused a change in
the loading rate as seen in contact load behavior in figure 6.14. Actual photoelastic peak
loading of the contacts 3-4 and 4-5 is shown in figure 6.15 where it is seen that although
there is some local disturbance due to surface roughness. the photoelastic fringes are very
clear and the results can be stated with confidence.

For rough particles, the wavelength showed a decrease of 20% as compared to the
results obtained from smooth disks and no variation in wavelength occurred as the wave
passed through the chain of particles; e.g, the wavelength as seen from the first loading
curve(1-2) is 80 mm. Minor variations in the wavelength as the wave passed through a
contact can be attributed to the fact that the waveform had to change as it encountered
a disk of different contact roughness.

6.5 CONCLUSION

These experimental and numerical results of wave propagation in particulate

materials have shown the following:
(1). Wave velocity showed a strong dependence on the particle shape. The velocity
increased from 950 m/s to 1250 m/s as the particle width was decreased from 38.1 mm
to 12.7 mm, while holding the particle length at 25.4 mm. This change in the stress wave
velocity can be attributed to a change in the particle mass per unit length in the direction
of wave propagation. As the particle width is varied, the internal wave reflection
mechanisms influence the travel time of the wave within a particle. This influence was
also seen in the wavefront shape. The wavefront took the shape of the particle as the
stress wave traveled through it. The experimental results were well corroborated by

numerical distinct element modelling.




(2). The wavelength of the stress wave pulse showed no appreciable change as the particle
shape was varied, as long as the contact interval was kept constant.
(3). Both experimental and numerical studies showed that the peak contact load
attenuation increased as the particle width was increased. This was due to the longer
internal wave propagation paths within the wider particles, which resulted in an increase
in the particle attenuation characteristics.
(4). The wave velocity decreased as the particle surface roughness was increased. This
was due to waves being scattered and reflected more number of times inside the disk
because of the increase in free boundary due to surface roughness.
(5). With rough particles, the peak contact loads did not show an attenuation as was the
case with smooth disks. Moreover, the loading curves were not very smooth. This can be
attributed to the difference in contact stiffness between different rough contacts and also
to the crushing of the rough edges as the wave passed through the contact zone.
Further experiments are currently being conducted to study the effect of contact
stiffness and contact profile on dynamic load transfer in granular media. This is necessary
to reach a better understanding of the influence of the particle shape on load transfer
characteristics, wave velocity and wavelength. Experiments are also being conducted to
study two-dimensional assemblies of elliptical particles, and random assemblies of
particles of different size and shape as shown in figures 6.16 and 6.17. Surface roughness
definitely affects dynamic wave propagation in a significant manner. Further experiments
with higher roughness are being currently done to develop conclusive relations between

roughness and the various parameters which govern wave propagation.
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Table 6.1 Numerical modeling parameters and results for single chain

assemblies of various elliptical particles.

Particle Size o | S K,/ m | Wave Speed
A@mY | p ,
(10* N/m'?) (N) | (10%$9) (m/s)
254 x 12.7 mm 1900 1.4 1.7 891.5 1.91 1221
254 x 19.05 mm { 4100 1.4 2.3 8§12.8 1.54 1095
25.4 mm dia. 6500 1.4 3.2 785.5 1.45 1058
254 x 381 mm | 11000 | 1.4 5.1 739.2 1.32 992

Table 6.2 Experimental results for the dynamic loading of single chain

assemblies of various elliptical particles.

Particle Size Average | Wavelength Radius of Peak Contact
Wave Curvature Load
Speed at the point of | Attenuation’
contact

254 x 127 mm 1250 m/s 101 mm 2.2 mm 5.3 %

25.4 x 19.05 mm 1140 m/s 103 mm 7.1 mm 10.5 %

25.4 mm dia. 1070 m/s 102 mm 12.7 mm 13.0 %

25.4 x 38.1 mm 950 my/s 104 mm 28.6 mm 18.1 %

* This is the drop in the peak contact load as the stress wave travels across four contact

points, from contact 3-4 to contact 7-8.
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CHAPTER 7

THE EFFECT OF PRELOADING

7.1 INTRODUCTION

It has been recognized that the stress history has a profound influence on the cyclic
behavior of granular materials. The reason is that a preloading introduces changes in the
initial fabric and provides the material with the memory of the stress history. In
connection with geophysics the effect of initial stress on the oscillations of gravitating
spheres has been considered by Love (1927) for the case of an incompressible material
under hydrostatic pressure. He also points out that the compressibility must introduce an
important effect of buoyancy. By an extension of Love’s method Macelwane and Sohon
(1936) have established equations for oscillations of a compressible gravitation sphere.
Birch (1938) has applied Murnaghan’s (1937) theory of finite strain and shows that the
hydrostatic pressure without initial pressure gradient has no effect on the law of wave
propagation. Biot (1940) showed that when there is an initial pressure gradient there is
a coupling between rotational and compression waves. This coupling is due to a buoyancy
effect. This effect is small for usual earthquake waves, but becomes predominant if we
consider tidal waves or the modes of oscillation of the earth.

Due to the difficulties in carrying out experiments to investigate directly the effect
of prestress on wave propagation phenomenon, researchers instead studied the effect of
prestress on the strength or shear modulus of granular materials.

The mechanism underlying the observed strengthening effects in the cyclic behavior
of precompressed sand was investigated by Ishihara and Okada (1978) by the use of the
triaxial shear test apparatus. The effect of prestress on the liquefaction resistance of sand
was conducted by Finn, Bransby and Pickering (1970). They showed an increased
resistance to liquefaction occurred when small shear strains (below the level of phase
transformation) were applied on the sand sample prior to the cyclic loading test. Whereas,
preshearing involving large shear strains (above the level of phase transformation) tended
to cause the sand to liquefy easily. Similar strengthening eftect due to the small

preshearing was also noted by Lee and Albaisa (1974) in their study of cyclic strength
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of dense sands through the use of the cycle triaxial test device. The effect of small
preshearing bears its practical significance in determining cyclic strength of sand deposits
subject to a series of small earthquakes occurring over a period of years. Through a
shaking table test, Seed, Mori and Chan (1979) showed that the sand subject to a
preshearing could sustain several times more cycles than the sand could do in its initial
condition without preshearing. Taki and Kitago (1974) also observed an increase in static
modulus of a loose dry sand which had undergone several hundred cycles of small-
amplitude vibratory stresses. Ishihara (1978) conducted cyclistatic triaxial test to study the
possible preshearing effects on the cyclic behavior of saturated sand. He found that small
preshearing developed less pore water pressure and shear stress in both sides of triaxial
compression and extension. Large preshearing made the material stiffer on one side of
triaxial loading, compression or extension, but softer on the other side. The increased
resistance to liquefaction or increased stiffness in static loading due to small preshearing
is expected to result from the hardening phenomenon which generally occurs in granular
materials due to plastic yielding. Chen, Ishibashi and Jenkins (1988) performed torsional
experiments on a hollow cylindrical sample consisting of glass spheres with two different
diameters to investigate preshearing effects on stress-strain response and dynamic shear
modulus. They found that the stress-strain response is stiffer when the material is sheared
in the direction of preshearing, softer when sheared perpendicular to it and little changed
when sheared in directions 45° to it. The dynamic shear modulus is sensitive to the
preshearing. There is little reduction in the modulus when the material is sheared in the
direction of preshearing and greater reduction when sheared perpendicular to it.

An experimental investigation of the effect of preloading on wave propagation
behavior in granular materials was conducted. A range of ratios of the biaxial
compression was used in this study. Investigation was also conducted on the effect of the
loading magnitude when the loading ratio was a constant.

7.2 GENERAL THEORY UNDER INITIAL LOADING

The behavior of stress waves in soil cannot be only accounted for by elastic
anisotropy or a change in elastic coefficients and the existence of stress introduces an
essentially new aspect in the nature of the wave propagation. The velocity of propagation

depends on the stress and it is possible to obtain reflection in a medium wiich has
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uniform elastic properties but contains discontinuities of initial stress.

Consider a state of initial stress such that a principal direction is always parallel
with the z axis, while the small additional strains are assumed to constitute a state of
plane strain in the xy plane. The initial stress is defined by the components S,,, S,, and

S, referred to rectangular axes x, y. They satisfy the equilibrium conditions

ds,, 9S, X (r)=0
—_ +p ()X (x,y)=
x 9 pLL.y )
a.n
EA)

oS
T:+ ay” +p Y (x,y)=0

where p is the specific mass and X, Y the components of the body force per unit mass.
An elastic element of coordinates x, y acquires the coordinates &=x+u, N=y+v after

deformation and rotates through an angle

o - %(av,'ax—au/ay) (7.2)

The stress components after deformation referred to directions which rotate with the

material are
G, = Sn‘“sn
_ 7.
G, = $,+5, (7.3)
O, = Su“xz

The components s,,, s,, and s,, of the stress increment depend only on the strain. This
stress may be referred to the original x, y directions and the components then become in

first approximation




O = 5,+5, (7.4)
$24 22 22

O, = 5,+(5,-5,)w

These are the stresses at the point &, 1 along the x and y directions.

These components satisfy the dynamical equilibrium relations
96 /o€ +d0 /o +(&.M)X(E,n)=p(E,n)du/dr’

(7.5)
Jd0 ,/ag +80”/8n +l(E,MYE . N)=pE . n)d*v/de?

where W(E, n) is the specific mass after deformation.
Now we can express these equations in terms of the independent variable x, y by

using transformations of the type

9., = 80"£+ac".al, etc. (7.6)
g dx 9§ oy 9§

The partial derivatives of x, y with respect to &, 1 are in first approximation

ox _ 1 1+Ov dx o 1 du
& D | o o Doy
a.h
dy _ 1o d _ |1 “au
% DA ool ™
where D is the Jacobian
l+8u du
p . d&n) _| ov 9y (7.8)
d(x.y) ov L+ ov
0x Jv

Using these relations and the property
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pxy) = D u@En)
expressing the conservation of mass Eqs.7.5 become

Jo _ do Jo o o
o it Zie 4 (e —(1))..__.

+ +e
ox dy 7 ox T oy ox
Jo o0'u
(e + = pXEM) = p2Y
(e, +@) 5 P &.n) P
(7.9)
800+ac”+e aonw » (e @)
ox dy Y ox ¥ 9y
do o*v
- w D+pYEM) = p—
(e, +) 5% pYE.m) P—

in which e,, =du/ox, e,, =dv/dy, e,, =(dv/0x+du/dy) are the strain components. We now

substitute the values eq.7.4 for ¢,,, ©,, and ©,, and drop terms of higher order than the

xx?

first; the above equations become

ds,, 85,2 oX X 0w ow
—_— _— — Y-2§, S8, —
oy Plar Py PO g S

ds,, 95, d5,, 93, o’u

+€ +e -€ + =
“oox Yooy Jdv  dx ot?
(7.10)
lez ds,, ow
—_ X+(§,, —+25 .,

ax E)y ox "P‘ +pu) H0 -5 "y

In order to obtain these equations account must be taken of the initial equilibrium

conditions eq.7.1 and identities




de, /dy = (d/ox)(e,,-w)
(7.11;
de, /ox = (9/0y)(e,,+®)

The stress increments s,,, s,, and s,, depend only on the strain. They may be taken
as linear functions of the strain components
S=BieutBe,, +B e,
522=Bz,e"+B22eyy+Bz3exy (7.12)
$12=B3ietByse,, +B e,

Assuming the existence of a potential energy function of the strain it is possible
1o prove that the elastic coefficients must satisfy the relations
B;+5,,=By 45y,
B,3-S,,=B;,+%S,, (7.13)
By;-S,:=Byp+%S),
It is only in case of initial hydrostatic pressure (S,,=S,,, $,,=0) that the elastic coefficients
will be symmetric (B =B,).

The boundary conditions along an element dx, dy of the boundary contour are

found to be

(84,-S,w)dy-(s,,-S,0)dx=dF,
(7.14)
(S|2+S 11 (D)dy'(szz'*'s 12(D)dX=dFy

where dF,, dF, are the projection of the force acting on the boundary element dx, dy.
We consider a simple case of a hydrostatic pressure with uniform pressure

gradient. This approximates the state of stress in a soil material near the surface of the

earth. Where under the action of gravity the influence of creep has been acting a

sufficiently long time so that the stress condition at every point has become isotropic.
Taking the y axis positive downward we have

X=0, Y=g

where g is the acceleration of gravity. Also §,,=S,, and $,,=0. We assume the specific

mass to be uniform (p=constant). With these equations eqs.7.10 become
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aS” asnz av azll

+ — Pl T P —

ox oy ox or’

(7.15)
axlz 05, Jdut 0%y
——r o pg
ox 9y ox or?

These equations arc different from the classic ones for an initially unstressed medium.
The additional terms are due to the existence of a pressure gradient. In order to
investigate the behavior of tne waves for those case, let us assume the stress-strain
relations to be Hooke’s law for an isotropic medium

s =he+2Ge,,

s;=Ae+2Ge,, (7.16)
$1,=2Ge,,

By substitution in Eq. (7.15) we find

de ov d*u
GVUH(G+N)—+pg__ = p—_
- G+ ox Pe ox P ot?
(7.17)
) de ou %
GV +H(G+N) e -pg e = p——
oy Pg ox P or?
We derive the tollowing equations for the dilatational ¢ and rotation @ by the
usual method
(2G M)V +2pg 22 - p.?“_‘f
ox or*
(7.18)

de Jd*w
GV 2028 - o2
PE=- =P =

These equations show the existence of coupling between longitudinal and
transversal waves. This coupling is due to an initial pressure gradient. The physical

meaning of this coupling is as follows. Consider a dilatational plane wave propagation in
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the horizontal direction. At a point where the material is compressed it is denser and
therefore has a negative buoyancy, while in the region of positive dilation the buoyancy
is positive. The dilatational wave is therefore associated with a periodic distribution of
vertical buoyancy force which generates a transverse wave. Conversely a transverse wave
propagating in the horizontal direction produces a dilatational wave. In this case a portion
of the material which is horizontal in the initial state undergoes a rotation and the initial
pressure gradient acquires a horizontal component of alternating sign which causes a
dilatational wave. It has been shown that the effect increases with the wave-length.
7.3 EXPERIMENTAL PROCEDURE

In last section, it has been shown that even in an isotropic material there is a
coupling between iongitudinal and transversal waves due to the initial pressure gradient.
In a granular material, even under uniform initial contact loads, there is an inherent stress
gradient inside the particle. This then leads to an inevitable coupling between longitudinal
and transversal waves. This kind of coupling as well as particle reflection effects result
in an extremely complicated wave phenomena in a granular material under preloading.
Experiments were conducted on BCC models under biaxial preloading, as shown in Fig.
7.1. Auention was concentrated on the investigation of the effect of preload ratio and
amplitude on wave velocity and wave attenuation. Dynamic photoelasticity along with
high speed photography were used in this study to record the dynamic event. The granular
media was simulated by Homalite-100 discs which were so arranged as to simulate a
body centered cubic packing granules. A specially designed loading fixture, as shown in
Fig. 7.1, was used to obtained the biaxial preloading. The loading fixture consists of a
cylinder driven by a hydraulic pump, a block which is mounted at the end of the cylinder,
a three block movable frame and a fixed frame used to support the cylinder and the
movable frame. When the cylinder moves down, the block on the cylinder loads the
model from the top. The model then passes force to the bottom block of the movable
frame. The bottom block then pulls the two side blocks inward through the links
connecting them. Therefore the model inside the fixture is loaded biaxially. The maximum
preload is limited by the capacity of the pump. The preload ratio is varied by using
different spacers between the model and the movable frame. A 11 rows by 11 columns

disc assembly was used to simulate the BCC granular media. Dynamic loading was
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achieved by firing a small amount of 50 mg PETN in a specially made charge holder as
aiso shown in Fig.7.1. The charge holder was placed near one corner of the disc assembly
to avoid the reflection effect on the particles of interests. In the following discussion, x
is defined as the direction of wave propagation, while y is the direction perpendicular to
the wave propagation.
7.4 RESULTS AND DISCUSSION

Dynamic photoelasticity has the advantage of providing a view of the whole stress
field during wave propagation in a granular assembly under preloading. First, the
assembly was loaded statically. A picture of the static fringes was taken for the
determination of the biaxial preloads. Four typical pictures of dynamic fi:nees obtained
for an experiment with the preload ratio being P,/P,=1.5 are shown in Fig.7.2. Wave
propagation in a granular assembly under preloading can be seen clearly in these pictures.
The wave propagation phenomena in biaxial preloaded granular media shows the similar
dependence of the angle made by the normals of contacting granules on wave propagation
to that of zero preload condition. When the contact angle is equal or larger than 90°, no
mechanical signal can pass through that contact. The disturbance of the preloading fringes
gives the position of the wave front as well as the average wave velocity. While the
dynainic fringes recorded by the high speed camera along with the static preloading
fringes give the wave attenuation. Wave velocity as a function of preload which is in the
direction of wave propagation for the ratio of P,/P, equal to 4 is shown in Fig.7.3. The
velocity as a function of preload which is in the direction perpendicular to the propagation
for the ratio of P,/P, equal to 0.25 is shown in Fig.7.4. It can be seen from these figures
that the wave velocity increases with the increase of preload for both ratios. When the
preload is less than 60 % of the dynamic load, the velocity increases at an increased rate
for both preload ratios. It increases at a lower rate afterwards. Part of this is due to the
closing up of the pore space thus forcing individual particle into better contact. The
maximum preload used in this investigation is 4500 N, which is 90% of the peak dynamic
load. Under this maximum preload, the maximum wave velocity for the preload ratio of
0.25 is 1380 m/s, which is about 28% higher than that of zero preload. The wave velocity
for the ratio of 4 is less than that of 0.25. The average velocity difference between these

two preload ratio is less than 5 %. One reason for this is because the particles used are
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isotropic, preload in either direction will have the same effect on the material density of
particles in a BCC assembly. As the preload had litde effect on either the fabric of the
BCC assembly or th= wave travel path, the wave velocity is almost independent of the
preload ratio. The small difference of the average wave velocity between these preload
ratios suggests that the wave velocity is dependent of the average preload. The wave
velocity plotted as a function of the average preload is shown in Fig. 7.5. The velocity
increases as the average preload increases.

The wave attenuation for the wave travelling from the disc after the one adjacent
to the explosive plotted as a function of preload for these two ratios is shown in Figs.7.6
and 7.7. For zero preload, the wave attenuation for the same distance of travel is 18 %.
This attenuation was increased by about 60 % as the preload increases to 4500 N for the
preload ratio of 4. The wave attenuation for larger preload ratio is less than that of
smaller preload ratio. This is because the initial contact length in the direction of wave
propagation for the ratio of 4 is larger than that for the ratio of 0.25. The larger contact
length leads to less reflection and less dispersion at the contacts. Thus results in lower
wave attenuation. However, the energy from the explosive tends to pass through both
chains in contact with the charge holder in the same amount. The final contact length
difference at the corresponding points is negligible. Thus the maximum difference of
average wave attenuation between these two ratios is about 10%.

The fluctuation and scattering of experimental data was largely due to the friction
effect which results in a certain amount of variation in the initial preload at different
contact, therefore leads to different initial contact length.

7.5 SUMMARY

The results of this investigation reveal that preload amplitude has effect on both
velocity and attenuation of stress waves in a BCC granular model. However, the preload
ratio has less effect on wave velocity than on wave attenuation. Due to the limited
capacity of the biaxial preloading fixture, the maximum preload obtained in this
investigation could not be larger than the dynamic loading used. It was noted in this
investigation that the peak dynamic load generated by the same amount of explosive was
a constant for different preload amplitude. This means the increment of the dynamic load

decreased as the preloads increased, as shown in Fig.7.8.
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CHAPTER 8

MODELING WAVE PROPAGATION IN GRANULAR MEDIA
USING ELASTIC NETWORKS

8.1 INTRODUCTION

Geological materials such as sand, gravel and rock are composed of large numbers
of individual particles packed in complex spatial arrangements. Such materials are
commonly referred to as granular media, and the load transfer is primarily conducted
through contact interactions between adjacent particles. The static and dynamic response
of these types of materials has been studied for many years by members of the soil
mechanics and geophysical community. An understanding of the dynamic behavior of
such materials is important in many geophysical applications involving seismic and blast
loading phenomena, and active interest also exists in applications to dynamic compaction
of powders in pharmaceutical and metallurgical processes.

Early attempts at modeling granular media behavior used continuum mechanics,
e.g elasticity, plasticity or viscoelasticity. However, it was gradually realized that the
complex microstructural nature of these materials requires that a microstructural model
be used to more accurately predict the mechanical behavior. Granular media has been
commonly described as a collection of distinct particles which can displace from one
another with some degree of independence and which interact basically only through
contact mechanisms. Because of this constituency, these materials establish discrets paths
along which major load transfer occurs; see for example the work of Oda, Konishi and
Nemat-Nasser (1982). The local microstructure or fabric, i.e. the local geometrical
arrangement of particles, plays a dominant role in establishing this discrete load transfer
phenomena. With regard to the propagation of dynamic loadings, it is found that the
discrete nature of the media creates a structured waveguide network of selective paths for
the waves to propagate along. The propagational characteristics of wave speed, amplitude
attenuation, and dispersion are thus related to the local fabric and the established wave
paths.

Early attempts at modeling granular media involved simulations with arrays of

elastic disks or spheres. Studies of the dynamic response of granular media using a
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microstructural approach began with the work of lida (1939) on simple lumped mass-
spring systems. Later, classic studies by Duffy and Mindlin (1957) investigated the
contact mechanics effects on the dynamic load transfer. More recently, there has been
a large volume of micromechanics research applied to a variety of complex matenals.
Fabric tensor theories have been developed by Nemmat-Nasser, et.al., (1982, 1984), and
Oda, et.al., (1982) to investigate the microstructural constitutive behavior of granular
media. A special continuum mechanics theory called the distributed body theory was
developed by Goodman and Cowin (1972) for materials with discontinuous fields, and
this model was applied to wave propagation in geological materials by Sadd and Hossain
(1988). Numerical simulations of wave propagation in these materials was carried out by
Sadd,et.al.(1989b), Bathurst and Rothenburg (1989), and Thornton and Randall (1988)
using the distinct element method first formulated by Cundall et.i’ (1°79). Extensive
experimental studies using methods of dynamic photomechanics and strain gages have
been conducted on these problems by Shukla and Nigam (1985), Shukla et.al.(1988a), and
Shukla and Damania (1987).

Based on the fact that granular materials transmit loads only through nearest
neighbor contact, this mechanism may be modeled as a simple load carrying link between
adjacent mass centers. Through the application of this concept, a load carrying network
can be established for various particle packing geometries, see Figure 8.1. Such network
theories have been employed in static theories for granular media by Trollope and
Burman (1980), Bagster and Kirk (1985), Bideau et.al. (1986) and Thornton and Barnes
(1986). In related work, Burt and Dougill (1977) used a simple planar pin-jointed truss
network to simulate the stress-strain behavior of heterogeneous materials which exhibit
progressive failure and strain softening behavior.

Following along these similar lines, Boardman (1990) developed a dynamic finite
element model for wave propagation studies based upon the elastic network
representation. In his work, each link in the network was taken as a one-dimensional
dynamic bar element with lumped mass at the end nodal points. The material was chosen
to be cohesionless, thus requiring that no element be capable of transmitting tensile
loadings. This produced a nonlinear finite element model which was solved using an

iterative scheme. The present study is a generalization of Boardman's work to include

137




both normal and tangential centact loadings through the development of a new one-
dimensional dynamic element. The element possesses both normal and tangential stiffness
and damping coefficients whose numerical values were obtained from dynamic
photoelastic experiments.  Comparisons of the proposed numerical model with
experimental results are given.

8.2 THE FINITE ELEMENT MODEL

As previously mentioned, a granular media is composed of a large number of
independent particles in contact with each other as shown in Figure 8.1a. For the case
of dry cohesionless media, neighboring particles transmit normal and tangential loads only
through contact mechanisms. This type of load transfer process can be modeled by
replacing each contact interaction with a tensionless load carrying link with prescribed
load transmission characteristics. Applying this process for all contacts in an aggregate
assembly, a network of links is established as illustrated in Figure 8.1b. For the case of
homogeneous circular particles as shown in Figure 8.1, all links connect the mass centers
of the particles to each other.

The load transfer characteristics of the links in such established networks are
modeled using the finite element method whereby each link is represented by a one-
dimensional finite element similar to bar or beam elements. The shape or interpolation
function concept normally used in finite element formulation is not used for this case
because of the contact mechanics processes that occur at points within the element. Thus
the generation of the element stiffness matrix is accomplished through a direct stiffness
method rather than using a variational scheme.

The generic element, shown in Figure 8.2, is taken to be a two-noded element
connecting the particle centers. The kinematics of each granule is determined through
specification of the two in-plane displacements and the rotation about the mass center.
Thus, the interaction between two disks is characterized by the generalized element
displacement vector {u,,v,,8,,u,,v,,8,}". The corresponding generalized forces would
include the horizontal and vertical nodal forces and a nodal moment. Therefore the static

element equation can be written as
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The elements of the stiffness matrix K represent the i"™-force corresponding to
a unit j"-displacement. For example, in order to calculate K,,*’ an element displacement
vector of the form {1,0,0,0,0,0}" is applied to the element model. Through the normal
contact, equilibrium produces the force system shown in Figure 8.3a, and this results in
an element force vector of the form {K,,0,0,-K,,0,0)",where K_ is regarded as the normal
stiffness between the two generic disks. It should be pointed out that for the static case,
this value could be determined from Hertz contact theory. Thus K, = -K,© = K,.

Next consider the case of a displacement vector of the form {0,0,1,0,0,0}". At the
contact point, there is a relative tangential displacement Av=0r,, and the tangential
contact force may be written as F=Kr,, where K, is the tangential stiffness coefficient.
In order to maintain equilibrium, each disk must have forces and moments as shown in
Figure 8.3b. For this case the force vector thus becomes {0,Kr,.Kr,2.0.-Kr,,-Kr,r,}", and
thus K;=0, K, =K1}, Ky,=K 1,2, K;;9=0, K, “=-Kr,, K=K r,r,. The various other

stiffness elements are computed in an analogous fashion yielding

- =

K 0 0 K 0 0

‘K(')I - : ! { £ 12 (82)
K. 0 9
K, -Kr,
Klrz2

Because real granular materials exhibit damping, the finite element model should
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contain this feature. This is easily incorporated through a velocity dependent dashpot at
the element level, and by employing similar methods as outlined for the stiffness matrix,
a damping elemem matrix |C*'], can be determined. The inertia modeling will assume
that the disk mass 1s concentrated at the disk center(i.e. at each node) and thus the mass
matrix [M®] will be diagonal. Thereforz, the complete model is given by the usual

element equation
MO + [CONid + (K = P (8.3)

The discrete nature of cohesionless granular media causes the load transfer
between particles to behave discontinuously in that if any two adjacent disks displace
such that the relative distance between their centers becomes greater than the sum of their
respective radii, the contact forces must vanish. Therefore, the contact model can only
transmit compressive forces and thus the actual stiffness and damping matrices for any
typical element connecting the i"™ and j® disks must be multiplied by the function
H((ri+rj)—ﬂij ), where H(.) is the Heaviside step function operator and {; is the computed
distance between the disk centers. This situation causes the numerical routine to become
non-linear, and requires a load incrementation procedure along with an iteration solution
scheme based on the Newton-Raphson method. Thus during the load incrementation
process all elements are continually checked for compression-only behavior resulting in
some elements being turned off while others possibly being turned back on. Finally, the
time integration of equation (8.3) was accomplished using a direct integration method
based on the Newmark scheme.

8.3 DETERMINATION OF MODEL PARAMETERS

In order to apply the developed finite element model to specific problems of wave
propagation in granular media, the mass, stiffness and damping matrices must be
determined for the media under study. Since the inertia modeling employed the lumped
mass concept, the elements of the diagonal mass matrix are completely determined by the
density and size of the individual particles. The stiffness and damping matrices are
however, not as easily calculated. As mentioned previously, for the static case the normal
and tangential contact stiffnesses K, and K, may be estimated from Hertz or more general

contact theories. However, for the dynamic case the contact mechanics problem becomes
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quite difficult to solve. It is for this case that experimental results were used to help in
the determination of particular parameters.

The specific experiments involved the use of dynamic photoelasticity to
photographically collect information on the wave propagation in transparent model
assemblies of granular materials. Details on the experimental techniques can be fourd
in previous papers (Shukla and Nigam 1985, Shukla et.al. 1988, and Shukla and Damania
1987) and will not be repeated here. The photographic data collected at various instants
of time provides sufficient information to determine the wave speed and the amplitude
(intergranular contact force) behavior for specific granular assemblies which have been
subjected to explosive loading.

In order to determine the normal contact stiffness and damping parameters,
experiments were conducted on a single straight chain of equal sized disks of radius
12.7mm and thickness 6.35mm. The disk material was Homalite-100 which has a mass
density of 1.2 x 10® kg/m®. Typical photoelastic data in the form of isochromatic fringe
patterns is shown in Figure 8.4 which illustrates a time sequence of the dynamic event.
Through a trial-and-error process, finite element predictions were calculated until
satisfactory agreement was reached with the experimental data. Thus by matching both
the wave speed and the amplitude attenuation, the normal stiffness and damping
parameters were determined as K, = 7.04 x 10° N/m and C, = 35 Ns/m.

The tangential stiffness and damping coefficients were determined from a simple
branch type of assembly shown in Figure 8.5. For this geometry, there exists tangential
contact forces between particles in the assembly. Again fitting the numerical predictions
with the experimental data determined the values K, = 10° N/m and C, = 10 Ns/m.

8.4 MODEL RESULTS

The developed elastic network, finite element model will now be used to simulate
the propagation of dynamic signals through specific assemblies of model granular
materials. For all of the cases under study, the input loading was taken to be a triangular
time pulse of 60us duration. It was felt that this type of input would reasonably simulate
the explosive loadings used in the experiments. The time stepping scheme used an
increment At = Ips. Comparisons of the numerical predictions are made with existing

photoelastic experimental data.
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8.4.1 Single Chain Assembly

The first example investigated was the straight single chain assembly previously shown
in Figure 8.4. For this case the wave speed predicted from the model was 1071 m/s
which matched quite well with the experimental value of 1080 m/s. In regard to the wave
amplitude as measured by the intergranular contact load, comparisons were made for the
maximum contact load between disks. These peak values were then normalized with
respect to the input loading to provide a consistent and convenient comparison technique.
Results of these peak contact load values for this assembly are shown in Figure 8.6 with
the upper number specifying the normal loading, the lower number giving the tangential
component, and the values in parentheses corresponding to the experimental results of the
normal component. Since the single chain is a symmetric assembly, there will be no
tangential contact loadings developed irregardless of the values of the tangential stiffness
and damping. Of course, numerical results for this case matched experimental values
quite well since this assembly was the one used to calibrate the numerical model
parameters.

8.4.2 Branch Assembly

The second assembly that was studied was the simple chain branch geometry shown
previously in Figure 85. The two branch angles 6, and 6, control how much wave
motion will be transferred into and along each branch. Figure 8.7 shows results of the
contact force ratio P,/P, for both the normal and tangential components for the case of
8, = 0, = 30°. The numerical predictions compare reasonably well with the experimental
results. Various other cases with different branch angles have been computed, and some
of these results are shown in Table 8.1. It is seen from this Table that the normal peak
contact loading in a given branch generally decreases as the branch angle increases.
8.4.3 Hexagonal Close Packing »

Another assembly which was studied was the hexagonal close packing as shown in Figure
8.8. For this case the disks are in their closest packing situation with six contacts per
disk. Waves will move in several different paths determined by the assembly structure
and the input location and direction. For the loading shown in the Figure 8., numerical
values along a main transfer path and a secondary path are shown. Again, numerical

results for both the normal and tangential peak loadings are shown and experimental
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normal loading values are also given for comparison. It is observed that for this case
very little tangentiai loading occurs. Figure 8.9 illustrates a second hexagonal assembly
that was studied in which the loading direction has been changed. Again very little
tangential loadings are present for this case. The effect of removing a disk to create a
void in this geometric fabric is shown in Figure 8.10. Results for this void case appear
to cause an increase in the local tangential forces around the void. Finally Figure 8.11
illustrates the case of replacing a disk with another of higher density and stiffness to
create a heterogeneous inclusion. The inclusion was modeled by a disk of steel material
with properties K, = 1.58 x 10’ N/m , C, = 78.72 N s/m , p = 7.8 x 10’ Kg/m®. The
inclusion, like the void, causes local wave scattering; however, it appears that the
inclusion produces less local tangential loadings than the void case.
8.4.4 Random Assembly
The final assembly which was studied was a randomly arranged system of equal sized
disks as shown in Figure 8.12. The irregular packing geometry produces a quite varied
wave propagational system, and creates tangential loadings at most of the intergranular
contacts, The comparisons of the numerical predictions with the experimental data for
the normal components are not quite as good as found in the other assemblies. This may
be a result of the significant amount of tangential loading present, and could imply that
a more sophisticated tangential stiffness law may be needed.
8.5 CONCLUSIONS
A microstructural wave propagation model has been presented for cohesionless
granular materials in which the dynamic load transfer between adjacent particles is
simulated through a special finite element. The particulate media is thus modeled by an
elastic network which accounts for the contact interactions and local microstructure. Both
the displacement and rotation of the particles are taken into account, and this leads to a
scheme to calculate both normal and tangential intergranular contact forces. Necessary
model stiffness and damping parameters were determined from experimental photoelastic
data from simple single chain and branch geometries. Several different types of two-
dimensional asser.blies were then studied using the proposed numerical routine, and
comparisons with existing experimental data were made. Numerical predictions were

geaerally within 10-20% of most of the experimental data.
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The current stage of the model employing linear stitfness and damping properties
gave reasonable results. However, it appears from both the experimental correlations and
general insight to the nature of the dynamic contact phenomena between particles, that
a more sophisiicated nonlinear contact law would provide a more accurate model of the
physics. Such nonlinear contact laws have been used with success in our distinct element
modeling and future directions of this type of modeling could include such a nonlinear
finite element along with a more generalized tangential force response.

The present finite element method of analysis can be compared with our other
numerical technique employing the distinct element method (Sadd,et.al.1989a).
Comparisons of the results of the two methods with experimental data indicated that each
numerical technique provided about the same level of correlation. It was generally found
that the finite element scheme was more computationally efficient, solving the same
problem on the same hardware in a shorter CPU time. However, the distinct element
model allows for general (finite) particle motions; whereas the current finite element

approach is limited to small deformations, thus precluding significant particle or fabric

rearrangement.
Table 8.1. Peak Contact Force Ratio for Branch Model
8, Side 0, Side
0, 0, Normal Tangential Normal Tangential
30° 30 554 -.054 554 054
30 45’ 631 -062 486 082
30° 60’ 694 -.078 399 106
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(b) Equivalent Elastic Network

Fig. 8.1 Elastic network modeling concept
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Finite Element

Fig. 8.2 Basic element of the elastic network

(a) Disk Equilibrium for Normal Loading (b) Disk Equilibrium for Tangential Loading

Fig. 8.3 Disk equilibrium
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Fig. 8.5 Simple branch assembly
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Fig. 8.8 Results and comparison for the HCP assembly
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Fig. 8.12 Results and comparisons for a random assembly




CHAPTER 9

DYNAMIC GRANULAR INTERACTIONS USING
BOUNDARY AND FINITE ELEMENT METHODS

9.1 INTRODUCTION

Wave propagation in granular materials occurs by means of dynamic signal
transfer through each of the granular contact points in the material. Our past modeling
schemes to simulate this type of wave motion have employed the distinct element method
(Sadd et.al., 1989a, 1989b, 1991a) and the elastic network method (Shukla and Sadd,
1990, Sadd et.al, 1992). Both of these models require specific contact load transfer
relations which provide the load-displacement characteristic of the granular contact. Our
past work has used experimental data to provide estimates of these stiffness parameters.
In this section we provide a review of our efforts to use boundary element methods
(BEM) and finite element methods (FEM) to determine these basic dynamic granular
interactions for general elastic granules.

The dynamic interaction of two or more elastic granules in contact can be
classified as a nonlinear initial/boundary value problem of elastodynamics. Such
problems are normally attacked using methnds of finite or boundary elements. The finite
element scheme is based on an interior discretization concept whereby the entire domain
is divided into elements, and the solution is obtained at all interior nodal or Guass points.
The boundary element method however, only discretizes the boundaries of the domain
under study. The resulting solution determines unknown boundary values of displacement
and/or traction. It would therefore seem that this method would be quite appropriate for
the granular contact problem in that one could investigate the dynamic load transfer from
granule to granule by only analyzing the granule boundaries. The boundary element
method would thus involve fewer unknowns by avoiding the calculation of the solution
of the stress field within each granule.

The basis of the boundary element method lies with development of the integral
formulation of the general elastodynamic equations. Integral formulations have a long
history and can be traced back to the work of G.Green in 1828. Elastodynamic
applications of the boundary element method were originally conducted by (Cruse and

Rizzo, 1968, Cruse,1968) by incorporating the Laplace transform scheme. Direct time
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dependent BEM methods have been developed and utilized by (Cole, et.al., 1978) and
(Manolis, 1983 and Manolis and Beskos, 1988), and (Brebbia, 1985) provides a
comprehensive review of these BEM applications.

This chapter will present analyses using both boundary and finite element methods
to calculate the basic interaction mechanics between two or more granules in contact. A
dynamic input will be applied to one of the granules, and the transient load transfer
through the contact point(s) will be computed. Of specific interest will be the wave
transfer speed and attenuation through the disk-contact system. The photoelastic and strain
gage experiments have shown that the wave velocity in an assembly of disks is less than
that in the disk material itself. For a material of Homalite 100, the P-wave velocity is
approximately 2000 m/s, whereas in an assembly of disks of Homalite 100, the wave
velocity has been measured as 1080 m/s. The effect of the granule shape and assembly
geometry will also be presented. Compariscn of the numerical results will be made with
existing expeririental data.
9.2 BOUNDARY ELEMENT METHOD FORMULATION

The basis for the integral equation formulation in elastodynamics is the dynamic
extension of Betti’s reciprocal theorem. This theorem is derived from virtual work
considerations and essentially relates two different dynamic states for the same elastic
body. The obvious choice for one of two elastodynamic states is the unknown solution
that is to be found, while the second state is normally chosen to be an appropriate Green’s
function.

Using this procedure the resulting integral statement can be developed

CEmEn = L _L' (G, (xa-1:8)1(x,T) - F, (x,1-T;8)u (x,1))dTdS (x) 9.1)

where & is the source point and x is the receiver point, G, and F, are Green’s function
tensors, and u; and t, are the displacement and traction on the boundaries. The coefficient
C, is specified by

[0 for§ eV,
C= 1{ 3§ for eV (9.2)

1

0.56, for&eS
where V_ is complement set of V+8S.
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Methods of solving the basic integral equation (9.1) have included direct time
domain approaches, and the use of Laplace and Fourier transformation. Our initial
research investigated the use of both time domain and Laplace transform domain
techniques. Better success was achieved using the Laplace transform method, and this
technique was then used for our detailed studies on granular interactions. The Laplace

transform is defined in the standard form as

f(x,s) = f;’ flx,ne'de 9.3)

where s is the Laplace parameter. In the Laplace domain equation (9.1) becomes

CLOES = [ (6,089 0x5) - F (&5 (x.9)dS®) 9.4)

Comparing equation (9.1) with equation (9.4) it can be seen that in the Laplace domain
the equation involves only the integration over space. The problem thus becomes static-
like for a fixed value of parameter s. The unknown boundary values of u, and t, in
equation (9.4) can be solved by using standard methods from boundary element theory
by dividing the boundary into a known group of boundary elements thereby reducing the
problem into a set of algebraic equations. The unknown displacements and tractions u;,
t;, are related to the corresponding nodal values using appropriate interpolation functions.
The element employed in this calculation is a three node type using quadratic

interpolation. Equation (9.4) is thus discretized into an algebraic system
(Kl{u} + [G]{t} =0 9.5)

where {u},{t} are the displacement and traction matrices, and [K] and [G] are coefficient
matrices. The number of the variables in the equation (9.5) is 4n (2n displacements and
2n tractions) where n is the number of nodes. In order to solve equation (9.5), the
boundary conditions have to be set. In general for non-contacting boundaries either the
displacement or the traction is known for each node. However in the contact zone both
.he displacements and tractions are unknown, and some additional conditions have to be
used. We assume that the contact is a no-slip type. The no-slip contact condition requires

that the displacements and tractions be continuous across the contact zone. A general
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contact model is shown in Fig.9.1. This model includes three parricles which are denoted
as domains Q,,Q, and €,, and boundary segments I'" and I'® represent two contact zones
between the particles. The analysis procedure starts by first establishing boundary
equations for each domain. The displacements and tractions are then separated into two
parts. One is related to the contact zone and the other is related to the remaining segments
of the boundary. Thus the coefficient matrices [K] and (G] also follow a corresponding
decomposition. For domain €, the algebraic BEM system would read

Klll Kll(l) ”1 Glll Gll(l) tl (96)

"

1)1 1X1 1) n1 X1 1
KO g0 ||y GO G| |
where u, is the displacement on the non-contact boundary of domain Q, and u,"" is the
displacement on contact boundary I of domain Q,, and t, and t," are the corresponding

tractions. For domain £, the system would be

Xy g2 OXD m (IX1) 1 ax2 ] [y
KUK KO G G G
2(1) 22 22) «1) 22 22) 9.7
K, K 2 K 2 U, r = Gz Gz Gz L e
Xy @2 22 @ 2X1) 22 @ | 1@

where u,, u,V, u,® and t,, t,, t,”’ follow similar definitions as before. Similarly the
equation for domain €2, can be obtained in a similar manner.

On boundary IV we have

u,® =P (9.8)
M _ M
L=k

and a similar relationship exists on boundary I'®. Using the contact conditions, the

boundary element equations for each domain can be combined into the single system
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At this stage, the solution of (9.9) for the displacements and tractions yields values in the
Laplace transform domain and these have to be inverted to the time domain. The standard

analytic inverse Laplace transformation formula

fix,n) = -1— I‘;iﬁ: flx,s)eds (9.10)
2ni

can not be used in this case because of the complexity of u, and t. Thus a numerical
method using Dubner and Abate’s method (Durbin, 1974) was incorporated to invert
the results. .
9.3 NUMERICAL RESULTS OF BOUNDARY ELEMENT METHOD

The preceding boundary element theory will now be applied to several granular
contact problems of interest to the research program.
9.3.1. Circular Disk Contact Models

The first application of our BEM analysis was made on a two disk contact model
shown in Fig.9.2. The boundary of each disk was discretized into 16 elements with 32
nodes. Contact was modeled by forcing the conditions in relation (9.8) at a single nodal
point as shown. Two different simulations were considered. In the first case, the bottom
of the disk was fixed, while the second test the bottem was free. For both simulations the
input load was applied at the top of the disk on node 1. The time history of the input
loading was a triangular profile with duration of 60 microseconds. The amplitude of the
input loading was chosen as unity. Other parameters taken to model the material and size

used in the experiments where
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Diameter of the disk 0.0254 m. (1.0 in)
4.82x10° N/m*.
0.35. 9.11)

1.2x10° kg/m’

Young’s modulus E

Poisson ratio v

Mass density p

Shown in Fig.9.3 is a typical numerical profile illustrating the comparison of the
input profile with the contact force profile between the two disks. The wave speed was

calculated in terms of the formula

¢ =L/At 9.12)

where L is the distance between the input and contact points, i.e. the diameter of the disk,
At is the time interval between the peaks of the input and contact profiles. It was found
that the wave speed of case one was 1004 m/s, while that of case two was 1168 m/s. The
experimentally determined wave speed was measured as 1080 m/s, and thus, the velocity
of test one was less than that of the experiment and while the value of test two was
larger. The reason for this difference in the results is of course the boundary condition.
In reality the boundary condition is neither fixed, nor free but is a compliant condition
being somewhere in between these two idealized conditions.

Because the bounuary condition at the bottom of the second disk plays a
significant role in the load transfer process a three disk model shown in Fig.9.4 was
constructed. This model will then more accurately simulate the conditions which exist in
a large granular assembly. The wave transfer profile for the model is shown in Fig.9.5.
For this case the wave velocity was calculated as 1080 m/s, and this value was consistent
with the experimental results.

In our previous research using the elastic network method (Sadd et.al,, 1992) a
required dynamic stiffness coefficient k, was determined by matching numerical results
with experiment data. In that work it was found that k,=7.04x10° N/m. The stiffness
coefficient k, can also be obtained through calculation. Using Hertz contact-stress theory,

it has been proposed by (Mei, 1989) that

k, = a(rthE/4) (9.13)
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where a = ¢*/(E/p) is a dynamic modification factor. Now acording to our BEM analysis
using the computed wave speed, a = 0.29, and thus, k, = 6.96x10° N/m, which agrees
quite closely with the experimentally determined value.

The wave attenuation is a measure of the reduction of the peak load transfer
through a granular system: Using Fig.9.3 and Fig.9.5 this reduction relative to the
triangular unit input can easily be determined. The attenuation for the three disk case was
found to be 0.875. The average measured attenuation of single chain disk assemblies was
found to be 0935, thus the numerical result is slightly less than that from the
experiments.

9.3.2. Elliptical Disk Models

In order to investigate the effect of granular shape on the dynamic load transfer
process, additional numerical simulations were conducted on two groups of elliptical disks
as shown in Fig.9.6. These two sets of disk assemblies have the same particle height
being equal o0 1 inch. The results of these numerical runs are shown in Table 9.1 along
with the previous circular disk case of a = b = 1.0 in. The profiles of the contact forces
are shown in Fig.9.7 and 9.8.

The numerical results show that the wave velocity in these model granular
‘materials depends on the shape of the particles. The wave velocity is clearly dependent
on the ratio a/b of the particle, and the velocity increases with a decrease of the ratio a/b.
Within an individual disk, wave propagation is quite complicated and a given wave
profile is the result of many waves that are reflected from the disk boundaries. Also some
waves will actually be confined to move on the boundary surface of the particle. The
wave is a synthesis of all of the direct and reflected waves propagating through many
different paths within a disk. As shown in Fig.9.6, the waves starts from the input source
point, and then propagates along many different paths to the output or contact point. For
the case shown in Fig.9.6 (a) ,the waves travel slightly longer paths than in the case of
Fig.9.6 (b), thus accounting for the change in the wave speed. Table 9.2 compares the
computational results with the experimental values. The comparisons show consistent
trends with a reasonable match in the wave speeds.

9.4 FINITE ELEMENT METHOD CALCULATION

A second numerical modeling technique which was used for this dynamic contact
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simulation was the finite element method. Using a standard two-dimensional plane stress
model for an elastic continuum with damping, the finite element scheme produces an

algebraic system model of the form

Ml{u} + [Cl{u} + [K]{u} = {F} (9.14)

where [M],[C] and [K] are the mass, damping and stiffness matrices respectively, and {F}
is external loading matrix. In this study a quadrilateral four node element, and a triangular
three node element have been employed. A consistent mass model was used to create the
mass matrix. At present, the damping matrix is ignored. A standard Newmark integration
scheme was employed to solve equation (9.14). The finite element method requires that
a two-dimensional mesh be generated, and a computer code was developed to generate
the mesh automatically. The FEM model is shown in Fig.9.9 for the case of a three disk
model.

The input load and the material and geometry of the disks are the same as the
previous BEM model. The total model includes 360 quadrilateral elements and 72
triangular elements, resulting in 433 total nodes. The time step used in the Newmark
scheme was 1 microsecond. The time history of the contact load of node 13 is shown in
Fig.9.10. Results from this FEM analysis indicated a wave speed of 1104 m/s while the
normalized peak amplitude attenuation was 0.82.

9.5 CONCLUSION

The boundary element method and finite element method were used to analyzed
the dynamic behavior of wave propagation in model granular systems. The numerical
results showed similarity to the experimental data in that the wave velocity in the granular
system is less than that in the particle material. Also consistent with the experimental
data, was the fact that the wave velocities were found to be dependent on the shape of
the particles in contact (see chapter 6 for the experimental studies). For elliptical disk
models, the velocity decreases with an increase in the particle dimension perpendicular
to the axis of propagation. The peak attenuation of the amplitude of the wave compared
reasonably well with experimental data.

The stiffness coefficient k, which is required in the distinct element and elastic
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network calculations, can be evaluated by these boundary and finite element methods of
analysis. Our preliminary numerically generated results for k, matched closely with the

previous values we have determined empirically.

Table 9.1 The Wave Speed and the Peak of the Amplitude of the Contact Force

a=1.5" b=1.0" a=1.0" b=1.0" a=.75" b=1.0"
Velocity (m/s) 806 1004 1250
Two Disks
Peak
(fixed) 802 880 919
Allenuation
Velocity (my/s) 915 1168 1411
Two Disks
Peak
(free) .697 .831 .870
Altenuation
Vclocity (m/s) 891 1080 1300
Threc Disks
Pe: ) .857
(free) cak 746 93
Attenuation

Table 9.2 The Comparison of Wave Speed with Experiment

a=1.5" b=1.0" a=1.0" b=1.0" a=.75" b=1.0"
Num. Exp. Num. Exp. Num. Exp.
Wave Velocity (m/s) 891 955 1080 1080 1300 1125
1
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Fig. 9.1 A general contact scheme
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CHAPTER 10

INFLUENCE OF LOCAL HETEROGENEITIES ON DYNAMIC
STRESS HISTORY IN GRANULAR ASSEMBLIES

An experimental study has been conducted to investigate the effects of local
heterogeneities like inclusions and voids on the wave propagation phenomena in granular
materials. Dynamic photoelasticity was used to study the effect of these defects on the
local stress field as the stress wave passes by. The results indicate that both inclusions and
voids produce local wave scattering through various reflection mechanisms. Inclusions
increase the wave length and produce more local attenuation while voids can change the
energy transfer paths.

10.1 INTRODUCTION

It is well known that actual granular media contains both voids and heterogeneous
inclusions. At the boundary of these discontinuities, an incident wave will produce
reflection waves of different modes. The increased complexity of the elastic-reflection
phenomenon, due to mode conversion effects, yields scattering. This further complicates
the wave propagation phenomena in an already complex microstructural material. In a real
granular material, wave propagation phenomenon not only depends on the microstructure
but also on the existence of voids and inclusions. There exist two possible modes of
compressibility commonly observed in granular materials, i.e. compressibility of granules
and compaction or distention of the void volume. Researchers have devoted much effort
to the study of the scattering of elastic waves by granular media itself. Mason and
Mcskimin (1947) measured the attenuation of elastic waves propagating through
aluminum and magnesium rods. They constructed a simple first-order theory of scattering
treating the granular materials as a distribution of small spheres. The scattering was
calculated as the sum of the scattering of individual spheres. Papadakis (1961) developed
this result to allow for variation in grain size. Hudson (1968) used the expression derived
for the first-order displacements of scattered waves from a region where the elastic
parameters vary smoothly to study the scattering of elastic waves by granular media. A
statistical approach was made by Huntington (1950), using ray theory and by Knopoff and

Hudson (1964), using full wave theory, for media whose properties vary smoothly with
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position. Martin (1984) developed a stochastic theory for the wave propagation in a one
dimensional model of a solid with a discrete random microstructure. Two Markov
operators parameterized by the internal and macroscopic times were used in his
formulation. Nunziato showed (1977) that the effects arising from the two different modes
of compressibility and the dispersive effects resulting from the initial non-uniformity of
the volume distribution function are coupled. In general, there are two distinct types of
acceleration waves. If the effects of coupling are small, one wave propagates with a
velocity close to that determined by the elasticity of the granules. While the second wave
is associated predominately with the compaction process. However the reflection and
scattering due to the random geometry of the particle boundary represents only a
secondary effect as compared to that due to the inclusion and void of which the size is
comparable to that of the particle in the granular media. Little work has been done on the
study of the effect of inclusions and voids on the waves in granular materials, up to date.
Few experimental studies of wave scattering and reflection because of inclusions and
voids can be found in literature.

An experimental study has been conducted to study the dynamic response of
granular materials with specific interest in investigating the local effects of inclusions and
voids on the wave propagation. Local microstructure or fabric plays an important role in
the way waves propagate in granular materials, and it has been found that porosity alone
is not sufficient to characterize such dynamic behavior.

10.2 EXPERIMENTAL PROCEDURE

Experimental dynamic photomechanics has been applied to aggregate assemblies
of circular disks in an effort to simulate the behavior of real granular materials.
Inhomogeneous inclusions and specific voids were constructed within the granular
medium, aid the local wave propagation phenomena associated with wave scattering was
determined. One dimensional (single chain) and twn dimensional (hexagonal closed
packing) granular materials, as shown in Fig. 10.1, were simulated by assemblies of 25.4
mm diameter, 6.3 mm thick disks of Homalite-100. The inclusions were created by
replacing particular disks with ones of different material. While voids were created by
removing disks from different locations. The experimental models were placed in the

optical bench of the high speed multiple spark gap camera and dynamically loaded by
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firing a small charge of explosive PETN which was contained in a specially designed
charge holder. The camera was triggered at some prescribed delay time after igniting the
explosive. Experiruental results indicate the primary role which local microstructure plays
in determining the wave propagation behavior. Much of the results can be related to a
fabric vector called the branch vector which is drawn between adjacent disk mass centers.
Both inclusions and voids produce local wave scattering through various reflection
mechanisms, and the results seem to indicate that the inclusions produce more local
attenuation.
10.3 RESULTS AND DISCUSSION
10.3.1 Wave Propagation in One Dimensional Models with an Inclusion
a. Wave Propagation in One Dimensional Models with a Steel Inclusion

The first experiment was conducted on a one dimensional chain granular assembly
of Fig. 10.1a with a steel disk in it. Steel has much higher acoustic impedance than
Homalite-100 disk does. A sequence of four photographs obtained during wave
propagation in this model are shown in Fig. 10.2. The maximum contact loads obtained
from these photoelastic data are shown in Fig. 10.3. In this model, each disk has two
contact points. It can be seen from Fig. 10.2 that when wave reaches the steel disk, very
high contact stresses were observed. The peak load at contact 3 is about 1.8 times the
peak load at contact point 1. The wave transmitted by the steel inclusion propagated at
an enlarged wave length about four times that of the input wave. Due to the existence of
the harder inclusion, the peak contact load of the transmitted wave at contact point 4 was
reduced to 50% of the input Load at point 1. In Fig. 10.2, it was found that the fringe
pattern appeared, vanished and appeared again around the contact point 1 because of
reflection at contact point 3. It reveals that large reflection wave generated by this
inclusion propagated backward with the same wave length as the input wave. The peak
reflection wave at point 1 was as high as 60 % of the input load to this point.
b. Wave Propagation in One Dimensional Models with a PSM4 Inclusion

When the rubber type material, PSM4 (with much lower acoustic impedance than
Homalite-100) was used for the inclusion the wave propagation phenomenon was different
from the previous one. The experimental photographs are shown in Fig. 10.4. The

maximum contact loads obtained from these photoelastic data are shown in Fig. 10.5.
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Very low contact load was found at the mismatch point. Since the reflection wave
generated by this inclusion (from high impedance material to low impedance one) is in
tension, it could not propagate through contacts. Therefore, no sizable reflection was
found. The peak value of the transmitted wave at contact point 4 was only about 25% of
the input. This was half of what was observed with the steel inclusion. The transmitted
wave by this inclusion propagated with a wave length 3.6 times that of the original one.

By comparing the above two experiments it was found that both steel and PSM4
inclusions can largely change the local contact stresses and enlarge the transmitted wave
length. Steel and PSM4 inclusions introduce large wave attenuation by different
mechanisms. A steel inclusion acted as a reservoir, which made it difficult for waves to
come out of it. While a soft inclusion acted as a dumper which made it difficult for waves
to enter it. In addition, harder inclusion can generate a compressive reflection wave with
the same wave length as the input while no reflection can be found with a softer
inclusion.
10.3.2 Wave Propagation in Two Dimensional Models with Defects

For the purpose of comparison, two-dimensional experiments were conducted on
a normal HCP model (with neither inclusion nor void), and HCP models with inclusions
or voids. Fig. 10.6 shows a sequence of four photographs obtained during wave
propagation in a normal HCP model. The normalized peak contact loads obtained from
these photoelastic data are shown in Fig. 10.7. In this model, each disk has six contact
points. There were neither orientation nor packing anisotropies. The wave front was of
the same shape as a HCP microstructure. Disk L in Fig. 10.1b was named the loading
disk on which the explosive loading took place. It can be seen that most of the energy
was transferred through three chains, A, B and B’, in contact with the loading disk, and
two chains C and C’, in contact with the disk just under the loading disk. Particular
attention was paid to chains A and C as well as disk M to study the local effect of
inclusions and voids. The contact load profiles for disk M plotted as a function of time
are shown in Fig. 10.8. P, and P, are the two inputs to the disk M, while P, and Py are
the outputs. These four contact loads were found to have almost the same duration. The
average wave velocity in the vertical direction is 1070 m/s. The contact load attenuation

in chain A for the wave travelling two disks from the one adjacent to the loading disk
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was 30 %. It was 41 % in chain B for the wave travelling two disks from the one
adjacent to the loading disk and 60 % in chain C for the wave travelling two disks from
the disk after the one adjacent to the loading disk.

a. Wave Propagation in Two Dimensional Models with Inclusions

When a steel inclusion was placed in chain A for the HCP model, the wave front
as shown in Fig. 10.9 was found to have the same shape as in media without inclusion
shown in Fig. 10.6. Most of the energy was transferred through the vertical chain under
the loading disk. The high impedance inclusion enabled the energy to be transferred into
it at a faster speed. The peak load at contact point at which wave entered the steel
inclusion was much higher than the input load. As in the single chain experiments, the
high impedance inclusion acted as a wave reservoir. It made it very difficult for the
energy to flow out to the low impedance material and increased the wave length
considerably. The peak contact loads obtained from these photoelastic data, as shown in
Fig. 10.7, also show tremendous effect of this inclusion on contact load attenuation in the
vertical chain A. For this arrangement, it was 69 % for two disk diameter of travel while
it was only 30 % for the normal HCP model. Wave propagation phenomenon in chains
B and C was not effected by the existence of the inclusion. The wave attenuation was 39
% and 19 % respectively in chain B and C for two disk diameter of travel. The contact
load profiles of disk M appeared similar to that in the normal HCP model. The inclusion
seemed to have little effect on the wave velocity. It was found to be 1070 m/s in the
vertical direction of this model.

Fig. 10.10 shows a sequence of four photographs obtained during wave
propagation in a HCP model with three steel inclusions. Since inclusion did not change
the energy transfer path, wave propagation phenomena in this model were similar to that
in the HCP model with only one inclusion. However three inclusions introduced large
wave attenuation and greatly increased the wave length in the vertical chain A. The
average wave velocity in the vertical direction was 1050 m/s. The wave attenuations in
chain B and C were almost the same as that in the model with one inclusion. Because of
the considerably increased wave length, the wave attenuation in the vertical chain A could

not be calculated form the photoelastic data obtained in this experiment.
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b. Wave propagation in Two Dimensional Models with Voids

When the inclusion becomes very soft, it is expected to act as a void. Thus
experimental investigaiion was also conducted on the HCP granular assemblies with voids
in it.

Fig. 10.11 shows a sequence of four photographs obtained during wave
propagation in a HCP model with a void in chain A. Around the void, each disk has five
contact points. Orientation is anisotropic for the disks around the void. Disks away from
the void still have six contact points. The shape of the wave front seems to be the same
as in the former model. However, it can be seen in Fig. 10.11 that the energy transfer was
seriously disturbed by the discontinuity in this assembly due to the void. The energy flow
along the vertical chain A was completely blocked by this void. The stress wave had to
change its propagation path when it reached the void. This results in large increase of
contact loads in chain C as shown in Fig. 10.12. Most of the energy transfer occurred
through chains B, B’, C and C,” as shown in Fig. 10.1b, which were in contact with either
the loading disk or the one right under the loading disk. Larger tangential contact forces
were found in chain C and the chains beside the vertical chain A than what were in a
normal HCP model. It can be clearly seen in Fig. 10.13 where the contact load profiles
for disk M are plotted as a function of time. The void not only changed the energy flow
pattern in this model but also made it very difficult for the energy flow to come back to
the vertical chain under the void. After passing the void, wave propagation phenomena
in the two vertical chains beside chain A were similar to what were in a single chain.
Little energy was transferred to disks neighboring these two vertical chains. When the
wave reached the void, wave velocity dropped suddenly as wave could not pass through
an empty space. However, the average wave velocity in the vertical direction was not
affected by this single void. It was found to be 1080 m/s. The wave attenuation in chain
B was 41 %, while it was 24 % in chain C for two disk diameter of travel.

Fig. 10.14 shows a sequence of four photographs obtained during wave
propagation in a HCP model with three voids. The wave propagation phenomena in this
model was similar to what was in a HCP model with one void. Chains B, B", C and C’
were still the main energy transfer path. It has been shown that a single void in chain A

can block the energy flow in that chain completely. So the effect of three voids on the
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vertical chain A was the same as that of one void. The average wave velocity in the
vertical direction was 1070 m/s. Wave attenuation was 43 % in chain B , and it was 26
% in chain C, for two disk diameter of travel. These are almost the same as that in a HCP
model with a single void.
10.4 SUMMARY

An experimental investigation has been conducted to study the dynamic response
of granular assemblies with inclusions and voids. The results show that both inclusions
and voids have little effect on the wave velocity in the experimental models. An inclusion
has no sizeable effect on the wave propagation path. However, it can introduce large wave
attenuation through reflection mechanism from the mismatch of material impedances. A
void produces wave scattering through free-surface reflecticn from the empty volume. It

can change the energy *ransfer path in a granular assembly.
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Fig. 10.1 Geometries of the models used in this study
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CHAPTER 11

FFFECTS OF CONTACT ANGLE AND MATERIAL PROPERTY ON
WAVE PROPAGATION IN HETEROGENOUS GRANULAR MEDIA

An experimental investigation was conducted to study the effects of contact angle
and material impedance on wave propagation and dynamic load transfer in two
dimensional heterogenous granular media. The main attention was on how the stress wave
propagates from one granule to its neighboring granules made of different materials. The
inhomogeneous granular media were simulated by circular disks made of different
photoelastic materials such as, Homalite 100, PSM1, PSM4, PSM9, CR39 and
nonphotoelastic materials like steel and aluminum. The experimental method utilizes the
combination of high speed photography and dynamic photoelasticity to visualize stress
wave transmission and reflection in two dimensional chains of different materials. The
photographs thus obtained were analyzed to get the normal and tangential contact loads
at the contact points as a function of time. The results indicate that the load transfer is
not only dependent on the angle between the vectors drawn from the mass centers of the
contacting granules, but also dependent on the material impedance of the contacting
granules. An empirical load transfer model is proposed to predict the peak contact loads
in heterogenous chains. Predictions from this model are compared with the experimental
data.

11.1 INTRODUCTION

Studies of the load transfer in granular media have been previously conducted by
many researchers. (Drescher and De Josselin De Jong, 1972) simulated granular media
by using assemblies of circular disks, and then studied the static load transfer threcugh the
assembly by means of photomechanics. (Rossmanith and Shukla, 1982) extended this icea
to the dynamic case through the use of high speed photography. Additional dynamic work
was also carried out by (Shukla and Damania, 1987). and (Shukla and Rossmanith, 1986).
Most of this previous work focussed on the wave propagation phenomenon in general
without going into details of relating specific microstructure to the associated wave
motion. Granular media transmit mechanical loadings primarily through contact

mechanisms between various grains. This is quite a complex process and depends
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inherently on the microstructural packing arrangements of the media. Recent theoretical
and experimental investigations (Nemat-Nasser and Mehrabadi, 1984 and Oda et.al., 1980)
have related microstructure to macroscopic behavior. This work points to the singnificance
of the local microstructure or fabric and that particular fabric vectors and tensors can be
used to develop theories to predict the mechanical behavior of such materials. The
concept of branch vectors in the direction of the contact normals have been proposed.
Particularly, (Nemat-Nasser and Mehrabadi, 1984) addresses this issue for the case of
dynamic load transfer by investigating the effects of the angle between branch vector on
the wave propagation through granular aggregate assembly chains. Recently, (Shukla et
al., 1988a) obtained experimentally the relation between the dynamic load transfer and
the contact angle in two dimensional chain assembly of circular disks.

The dynamic load transfer problem will be much more complicated when granules
make contact with different materials. Both transmission and reflection of the mechanical
signal are involved and not much literatur= exists on the theoretical analysis. This study
is thus focussed on both effects of contact angles and material impedance on wave
propagation and dynamic load transfer in heterogenous granular media.

11.2 EXPERIMENTAL AND ANALYTICAL PROCEDURE

The experimental method used in this study was the combination of dynamic
photoelasticity and high speed photography. The experimental model is shown in Fig.
11.1. The chain 1 (input chain) consists of Homalite 100 disks and chain 2 and 3 (output
chains) consists of disks made of other materials such as steel (which has much higher
Elastic Modulus E and Density p than Homalite 100), CR39 (which has similar material
properties as Homalite 100) and PSM1 (which has much lower E and p than Homalite
100).

The experimental models were placed in the optical bench of a high speed
Cranz-Schardin type camera. The camera was triggered at some prescribed delay time
after igniting the explosive which is placed on the top of the model ( see Fig. 11.1 ). This
high speed photography system operated as a series of high intensity extremely short
duration pulse of light and provides twenty photoelastic images at discrete times during
the dynamic event.

The Hertz stress field equations along with the stress optic law were then used to
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calculate the contact loads. All the dynamic contact loads between two different matenial
disks were obtained by analyzing the Homalite-100 disk. The experimental results are
discussed in the following section.
11.3 RESULTS AND DISCUSSIONS

A series of experiments were conducted with the experimental arrangements shown
in Fig. 11.1. Both, the effects of the branch angles 6,, 6, and material impedance on load
transfer phenomenon were taken into account. The first group of experiments was
conducted with 8,=0,=45°. The left branch of disk chain was always of the same material
as input chain, i.e, Homalite 100. The material on the right branch, however was varied
from a very low impedance material, PSM4, to a very high impedance material, steel.
Here the material impedance is defined as pC, where p is the material density and C is
the longitudinal wave velocity in the material. The typical dynamic isochromatic
photographs obtained are shown in Fig. 11.2. The fringes are distributed symmetrically
around the contacts in both chains, indicating predominantly normal loading. And there
are no fringe patterns at contact points along the side supports meaning that all the energy
is channelled along the disk chains. More intense fringe patterns at the contact point of
the right branch implies that a larger contact load transfer occurred in the steel chain. This
is also clearly shown in Fig. 11.3 where the contact loads as a function of time are

plotted. From Fig. 11.3 it is found that the contact load P,_,, is even larger than the input

Imax
load P,,,,. This can be explained by wave motion theory, the input stress of a bar can be
even doubled if the end of the bar is fixed. Another extreme case was investigated in
which rubber type material PSM4 was placed in the right branch chain, as showr in Fig.
11.4. The experimental results are shown in Fig. 11.5. This time, P,,, is highly reduced
due to lower impedance of the material in that chain. On the other hand, comparing with
the previous experiment, there is little difference in the contact load at the left branch,
Poma/Pima @re 0.59, 0.61 respectively.

Other materials such as PSM1, PSM9 and CR-39 were also used and the results
are shown in Table 11.2. It is very surprising to find that even for the same branch angle
(8,=0,) the output contact loads P,,,, and P, are not equal and the ratio, Py ,./P| ...

varies largely if different materials are present. This result quantitatively shows how the

mismatch of material impedance affects the dynamic load transfer locally at contacts in
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heterogenous granular media.

From the above experimental results and discussions, it is felt that the dynamic
load transfer is dependent on both the contact angle and the material impedance and there
should be some relation between them. On the other hand, it would be very cumbersome
to do thousands of experiments for different combinations of contact angles and material
properties to obtain this relationship. Therefore, a load transfer model is proposed here
by taking into account both the effects of contact angle and the material property.

11.4 LOAD TRANSFER MODEL

First, let us focus on the stress wave problem in a bar with discontinuous cross
section made of different materials ( Fig. 11.6 ). A disturbance at the left end of bar 1
will cause an elastic compressive pulse with intensity o, to propagate to the right. At the
interface with bar 2, the wave will be partly transmitted and partly reflected. Call the
transmitted wave amplitude G, and the reflected wave amplitude o,. Then, we have the

expressions

_ el (11.1)

plcl+‘)2c2 l

R L (11.2)

ARSI NO
where p is the material density and ¢ the wave velocity in bar.
Now let us look at the wave propagution in one dimensional chain with different
materials (Fig. 11.7). In this problem we try to predict P, by knowing P,. Experimentally

this has been done for the case of identical materials, Homalite-1(X). In general we have
P, = KP,. where K =097 for 1" disk (11.3)

If the disk chain consists of two kinds of materials, then equation (11.3) can be simply

written as




,
P, = K__‘_‘)ZEZ___P (11.4)

p.C, + p,C, '

*o

Since we are mainly investigating the transmitted wave, thus reflection is not
considered here. Finally, if the angular dependence effect is also censidered, we obtain
the relationships between P Py and P, as

2max?

2p,C
P, - f(8,8) "2 _p (11.5)
plCI + p2C2
2p,C
P, = (6,8, P P, (11.6)
P.C, + p,G

where the function f is plotted in Fig. 11.8 (Shukla et.al.,1988) and the factor K in
equation (11.3) is included in f(8,, 8,) function. The equations (11.5) and (11.6) can be

used to predict peak contact loads of P, and P, if P, is given. Fig. 11.9 shows the

Imax
comparison of experimental results and theoretical prediction for 6,=0,=45°. It is seen
that the load transfer model has a good agreement with the experimental results.

To verify the load transfer model more experiments were done for 6,=45°, 6,=60°
and 6,=60°, 8,=45°. Also, materials other than Homalite-100 were used. It is found from
Table 11.2 that even for larger angles and different materials in both left and right
branches, the predicted values match the experimental results well (maximum error is
14%).

11.5 CONCLUSIONS

The results indicate that:

(1) The dynamic load transfer from one disk to the neighboring disks not only
depends on the branch angles and the inter-relationship between the two angles, but also
depends on the relative material impedance of the two branches.

(2) For the same branch angles (8,=0,) the higher contact load occurs in the
branch where the larger material impedance exists.

(3)The load transfer model proposed can predict the peak contact loads very well.
Good agreement was found between the proposed theoretical formulation and the

experimental results. This model is a necessary first step for further study of wave
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propagation in heterogenous granular media.

Table 11.1 Material Properties
Material Elastic Modulus Poisson’s Fringe Mass Wave
E(MPa) Ration Value Density Velocity
Static  Dynamic n (K /m) p (Kg/m) V*(m/s)
Homalite 100 3860 4800 0.35 23.6 1200 1050
PSM1 2480 0.38 7.0 1160 850
PSM4 3 125 0.46 0.18 1090 250
PSM9 3310 0.37 1170 930
CR-39 1900 3120° 0.42 15.4 1180 880
Steel 210000 0.29 7800 2000
Aluminum 70000 0.34 2700 2200
* "Static & Dynamic Calibration of a Photo Model Material CR-39", by A.B.J. Clark,
S.E.S.A Proceddings, Vol. XIV No. 1, 195-204
*k Wave Velocity in One Dimensional Chain of Circular Disks obtained by authors

Other data from "Experimental Stress Analysis”, Dally, J. & Riley, W.
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Table 11.2

Comparison of Experimental Results and Proposed Formula

Materials and Angles Experimetnal Results Prediction Error (%)

lel br'dnCh nghl branCh leax Imax Pimax/lea‘ leax/PImax P?max/leax

Homalite 100 PSM | 0.65 0.49 0.60 0.53 8.3 8.2
0,=45° 0,=45°

Homalite 100 PSM9 0.64 0.59 0.60 0.56 6.3 5.1
0,=45° 0,=45°

Homalitc 1) CR-39 0.64 0.58 0.6N 0.54 6.3 6.9
0,=45° 0,=45°

Homalite 100 PSM4 0.61 0.19 0.60 0.21 1.7 10.5
0,=45° 0,=45°

Homalite 100  Sicel 0.59 1.06 0.60 1.11 2.0 5.0
0,=45° 0,=45°

Homalite 100 Aluminum 0.57 0.97 0.60 0.98 5.3 1.0
0,=45° 6,=45°

Homalite 100  Steel 0.71 0.96 0.68 0.89 4.2 1.3
0,=45° 9,=60°

Homalite 100 PSM4 0.66 018 0.68 0.17 3.0 5.0
0,=45° 0,=60°

Homalitc 100  Stcel 0.56 1.14 0.48 1.26 14.3 10.5
0,=60° 0,=45°

Homalitec 100 PSM4 042 0.21 0.48 0.24 14.3 14.0
0,=60° 0,=45°
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Fig. 11.2 Typical isochiomatic fringes obtained in a symmetric
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CHAPTER 12

WAVE PROPAGATION AND DYNAMIC LOAD TRANSFER
IN LAYERED AND HETEROGENOUS GRANULAR MEDIA

12.1 INTRODUCTION

Dynamic load transfer due to explosive loading in layered and heterogenous
granular assemblies was studied using dynamic photoelasticity. The heterogenous granular
assemblies consisted of circular discs fabricated from photoelastic materials such as
Homalite 100, PSM1, PSM4, PSM9, CR-39 and nonphotoelastic materials such as steel,
rock and aluminum. The preliminary experimental results showed that the local
microstructure controls the magnitude of load transferred in any given direction. The load
transfer depends not only on the angle between the vectors drawn from the mass center
of the contacting granules but also on the acoustic impedance of the contacting granules.
The wave dispersion and scattering produced by the mismatch of acoustic impedance in
the heterogenous assemblies resulted in much more peak contact load drop than that in
a homogenous granular medium.
12.2 RESULTS AND DISCUSSIONS
12.2.1 Wave Propagation in Layered Granular Media

Fig. 12.1 shows an experiment conducted by replacing a layer of Homalite 100
discs with steel discs in a hexagonal closed packing. The average wave velocity through
the steel layer in the vertical direction was found to be about 860 m/s which is 9.5% less
than the average wave velocity 950 m/s in the assembly of Homalite 100 discs. The peak
contact load attenuation in the main chain A or B was 73% for four disc diameter travel
(see Fig. 12.2) which is slightly larger than 70% in a pure Homalite 100 discs assembly
(Shukla and Damania, 1987). The contact loads before the steel disc layer were greatly
increased and those after the layer were greatly decreased as for the one dimensional
chain. The contact duration after the steel disc layer was also increased. It was also
noticed that the steel disc layer created a large reflection wave which resulted in a large
contact load (even greater than the transmitted contact load). Fig. 12.3 shows photoelastic
photographs when PSM1 disc layer were used as the inhomogeneous layer. PSM1’s

acoustic impedance (pV) is slightly less than that of Homalite 100. It was found that the
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average wave velocity through the layer was around 840 m/s which is 11% less than the
average velocity in a homogenous granular assembly of Homalite 100 discs. The peak
contact load attenuation in the main chain was almost same as for the homogenous
arrangement. Due to the very small difference in acoustic impedance of the two materials,
Homalite 100 and PSM1, no reflection wave was noticed.

When a layer of rubber type disks made from PSM4 was placed in the HCP model
as shown in Fig. 12.4 the wave propagated through this layer with a great reduction of
amplitude and a large increase of wave length. Fig. 12.5 shows the comparison of peak
contact loads along the main chain between the normal HCP model and HCP model with
a PSM4 disk layer. The peak contact load attenuation in the main chains was as high as
90% with PSM4 disk layer. The average wave velocity in the vertical direction was also
greatly decreased by this soft layer from about 1000 m/s of the normal HCP model to
about 650 m/s. No sizable reflection wave was noticed from this inhomogeneous layer.
This can be explained by that the reflection wave would be a tension wave which can not
propagate via contact mechanism of granular materials.

Fig. 12.6 shows an experiment conducted by placing two different layers ( one
steel disk layer and one PSM4 disk layer) in HCP models. In Fig. 12.6 the PSM4 disk
layer was placed on top of the steel disk layer. It was found that the wave amplitude
attenuation in the main chains after these two layers was about 95%. When the steel disk
layer was placed on top of the PSM4 disk layer the experimental results showed same
wave attenuation after these two layers in the main chain. In addition, a large reflection
wave was generated and it propagated back with same wave length as the input. However,
there was no reflection wave when the PSM4 disk layer was placed first.

12.2.2 Wave Propagation in Heterogenous Granular Media

Fig. 12.7 shows a sequence of four photographs obtained during wave propagation
in an heterogenous HCP model. The disk material distribution is shown in Fig. 12.8. It
can be seen from Fig. 12.8 that this granular assembly consisted of different materials
such as aluminum, rock, steel, PSM4 and Homalite 100. A steel disk and a PSM4 disk
were placed in the two main energy transfer chains respectively. When wave reached the
left main chain, higher contact load was obtained due to the existence of a steel disk.

However, at the right main chain the contact load became very small due to the PSM4
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disk.

Fig. 12.9 shows the wave propagation event in another type of heterogenous HCP
model. In this HCP model, the energy transfer occurs at three disks under the input one
(we call this a vertical HCP model, the HCP model mentioned at the above paragraph has
two disks to transfer energy under the input disk and is simply called HCP). Ttre
maximum contact loads are shown in Fig. 12.10. In a normal vertical HCP model there
are five main energy transfer paths. However, when PSM4 and steel disks are placed in
the three main chains, as shown in Fig. 12.10, the peak contact load becomes less than
10% of the input for a four disk travel distance . If we look at the disk in the vertical
chain under the input disk, then, due to the existence of PSM4 disks, the contact loads
become only 13% of the input (for a normal vertical HCP model, it is 55% of the input).
At the left and right branches, the peak contact loads are 33% and 31% of the input. For
a normal vertical HCP model it was only 22% of the input. From these results, we see
that because it is difficult for energy to transfer through a disk with much lower acoustic
impedance, the energy transfer path changes. This results in the increase of peak contact
loads at the two branches mentioned above.

The last experiment conducted is shown in Fig. 12.11. The disks were randomly
placed with randomly distributed disk materials. In this heterogenous model, one particle
( disk ) usually has three and four, or even two contacts with other particles ( a HCP
model has six contacts). When this model is explosively loaded at one point, instead of
quasi-circular wave front observed in a homogenous HCP model, or quasi-triangular wave
front observed in a vertical HCP model, the wave front in this case is irregular as shown
in Fig. 12.11. The wave velocity in the vertical direction is reduced due to the zig-zag
packing of particles. Fig. 12.13 shows the comparison of wave velocity in the vertical
direction for different experimental models. It can be seen from Fig. 12.13 that wave
velocity in the homogenous HCP model is higher than that in a random heterogenous
model. Some of disks in this assembly were not loaded at all as shown in Fig. 12.11 and
12.12. On the other hand, some disks were loaded by reflection waves from the mismatch
contacts. There is no main energy transfer path through the particle arrangement. However,
the maximum contact loads can be traced through those disks with smaller contact angles

and less difference in acoustic impedance.

192




12.3 CONCLUSIONS

The above preliminary experiments show that:

(1) When a wave propagates through a much harder layer in granular media, it
will largely increase the contact load locally before the mismatch points and decrease the
contact load after the layer. It will also generate a reflection wave with the same wave
length. Also the contact duration after the harder layer can greatly increase.

(2) When a wave propagates through a much softer layer in granular media, it will
result in decrease of the contact loads before and after the layer. The wave length will be
increased greatly and no sizable reflection will be found. When the difference in the
acoustic impedance of constituents in heterogenous granular media is small, the dynamic
load transfer phenomena is similar to that in a homogenous model.

(3) The main energy transfer path in an heterogenous granular media varies
according to the microstructural arrangement and acoustic impedance of disk materials.
However, this path can be found through lines connecting the disks with less acoustic

impedance change and smaller contact angles.
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CHAPTER 13

DYNAMIC LOAD TRANSFER IN VIRGIN AND
DAMAGED GRANULAR ROCK MEDIA

An experimental investigation was conducted to study dynamic load transfer in
granular rock media. The granular rock media was modeled as one-dimensional chain of
disks fabricated from four different types of white Vermont marble. The study focuses on
the effect of microstructure on transient pulse propagation. The transient pulse is
generated oy exploding a small amount of lead azide charge on top of the rock disk
assembly. During wave propagation dynamic contact strains are recorded u»ing electrical
resistance strain gages. This information is used to calculate wave velocity and attenuation
as a function of the cumulative damage in ilie disk assembly.

13.1 INTRODUCTION

The response of particulate materials to impulsive loading, has been of substantial
interest to both engineers and researchers. The stress wave propagation in such a media,
due to explosive loading, depends primarily upon the load transfer process by which the
mechanical signals are transmitted. This phenomenon is related to the properties,
geometry as well as the microstructural arrangements of the particles in the media. As the
stress wave passes through the system rearrangement of the particles takes place. Further,
depending upon the amplitude of the stress wave, damage can occur in the particles. Thus
the transmitted wave carries along with it the information regarding the damage and the
microstructural rearrangements of the grains. The wave-propagation characteristics of the
resulting media 1s different as compared to that of the virgin material. Moreover, it has
been observed that for real earth materials like sand and rock, this load transfer
phenomenon is also a function of the state and history of the applied load.

This chapter presents preliminary work on the wave propagation and load transfer
in a one dimensional disk chain assembly. The disks were fabricated from four different
grades of white Vermont marble each having a different microstructure. The stress wave
is generated by exploding a small amount of lead azide on top of the disk assembly. The
dependence of the stress wave velocity and attenuation on the microstructure of the four
grades of marble rocks was studied. In general the composition of marble is

heterogeneous in nature and the microstructure comprises of preexisting voids,
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microcracks and inclusions. : . this study, particular attention was paid to the effect of
grain size and accumulated damage due to prior loading on wave propagation. Attempt
was also made to investigate and quantify the damage that occurs in these one
dimensional aggregate of disks under repeated stress wave loading. Tensile splitting tests
were performed to estimate the residual strength of the disks. Photomicrographs were
taken at different stages of the stress wave loading process. Moreov _r, the stress wave
velocity as well as the wave attenuation were obiained as a function of the accumulated
damage in the disk assembly.

13.2 EXPERIMENTAL PROCEDURE

A series of experiments was conducted on a single chain assembly of rock disks
to study wave propagation in the rock media as shown in Fig. 13.1. These disks were
fabricated from four different cores of Vermont marble having different microstructure
as shown in Fig. 13.2. Typical values of the Young’s modulus and the Poisson’s ratio for
the Vermont marble used were +41.3 and 0.23 GPa respectively. The rock disks were 31.75
mm in diameter and 13.7 mm in thickness. The assembly of disks was explosively loaded
using 15 mg of Lead Azide in a specially designed charge holder. The resulting dynamic
load transfer phenomenon in the disks was studied using electrical resistance strain gages.

The strain gages were bonded on four separate disks in the chain at a distance of
7 mm from the contact point. The strain gages were suitably connected to the Nicolet
Oscilloscopes through the bridge amplifiers. The oscilloscopes were triggered when the
explosive was detonated. The resulting strain profile was recorded as a function of time.
The strain profile was analyzed to obtain the average stress wave velocity, peak contact
strain, duration of contact, as well as the stress wave attenuation.

To study and quantify the effect of damage induced in the rock disks due to
repeated stress wave loading the residual strength, the wave velocity and the stress wave
attenuation were obtained for the single chain of the disk assembly. This ave' 1\ge wave
velocity and the stress wave attenuation were plotted a¢ a function of the number of times
the assembly was loaded.

The residual strength of the disk was measured by an indirec tensile test. In these
tests the marble disks were laid vertically on the loading plates of the Instron machine in

the compression mode. The load was slowly increased at a very slow rate until the
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specimens failed by splitting across the vertical diameter. Assuming linear condition

within the core the approximate tensile strength ¢,, was calculated using the equation:

G = L ma (13.1)

where P, is the applied load at fracture, D is the diameter of the core and L is the
length of the core.

To estimate the residual strength of the damaged rock disks 15 mg of lead azide
was used to generate the stress wave through the assembly of disks. The tensile tests were
carried out on the first two disks taken out from the top of the assembly. Two new disks
were placed on top of the disk assembly to replace the damaged disks. The chain
assembly, this time was loaded twice, and again the top two disks were taken out and
their residual tensile strength obtained. This procedure was continued until the residual
tensile strength was obtained for the disks which had been loaded five times.

13.3 ANALYSIS

The wavelength of the stress wave generated by the explosive charge was
approximately four times the diameter of the disks as observed in these experiments. This
resulted in a quasistatic type of loading around the contact zone (Shukla and Damania,
1987). Hertz contact theory along with the strain gage data were thus used to calculate
the contact strains.

Using Hertz contact stress theory, the stress field equations at any point (x=0,z)

around the contact region of the two bodies, as shown in Fig. 2.7, are represented as:

b* z ¢,
Gzz=‘
T A
2 2
G - bz(b +22¢1_2ﬂ) (13.2)

=~ TTA b
o =217
b

x

where ¢,, M and A are:
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where R is the principal radius of curvature of the body, E is the modulus, v is the
Poisson’s ratio and b is the half contact length. For the two dimensional plane stress

problem the contact normal strain is given by:

z—::l(c

N = = -vo,) (13.3)
E

Substitution of equation (13.2) in equation (13.3) results in a non-linear equation for
normal strain €,, in terms of the half contact length b as shown below.

2
- b Z¢‘(1+ 2T AV ) (134)

£ —_ !
i En A b® o,

The normal strain is plotted as a function of the normal distance from the contact for
different values of the contact length 2b as shown in Fig. 13.3. Thus by experimentally
obtaining the normal strain at a known location (x,z) on the disk the half contact length
b as well as the contact strain can be calculated. Since the strain gage has a finite size it
averages the strain over its grid area. This average strain is not equal to the strain at the
grid geometric center. From the plot of the strain vs. distance (Fig. 13.3) it can be seen
that steep gradients in the strain exist near the contact point and the strain profiles peak
around z=1.0 mm. As the distance normal to the contact point increases the strain
gradients reduce and the strain profiles become almost flat after 7=6 mm. Thus it is
important that the strain gages be placed beyond z=6 mm so as to minimize the averaging
error. Further the Hertz contact stress field is valid for a distance approximately equal to
8b from the contact point (Shukla and Damania, 1987). Typical half contact length

obtained in the experiments was 1 mm. Thus to meet the above constraints the strain gage
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must be placed at a distance of more than 6mm and less than 8mm from the contact
point. Fig. 13.4 shows the three dimensional plots of the strain profile as a function of
both x and z as the strain gage surface would experience. When the center of the strain
gage is placed at 7mm from the contact point the strain gage experiences small strain
gradients as compared to being placed 2mm and 4mm from the contact point.

To estimate the error introduced due to the finite size of the strain gages the
percentage error was calculated by considering a strain gage with a grid size (L X L)

positioned at a height z above the contact point. The percentage error is defined as:

ec —8av
Error % = _2 % X 100 (13.5)

€g

The strain €;° at the geometric center of the strain gage is calculated from equation
(13.3). The strain gage area is discretized into a grid containing (100 X 100) nodes and
the strain at each node is calculated. From this the average strain is obtained. The results
are presented in Fig. 13.5, which shows the error due to the averaging effect as a
function of the gage grid length, L. The results are plotted for different heights, z above
the contact points. The error is higher for strain gages closer to the contact points because
of the steep strain gradients. Also the error increases as the strain gage size increases. For
the size (2mm X 2mm) and the location of the strain gage used in this study the error is
about 2 %.
13.4 RESULTS AND DISCUSSIONS
13.4.1 Wave Propagation in Virgin Rock Disk Assembly

A series of experiments was conducted with strain gages mounted 7mm from the
contact point of the disks. Strain versus time plots at the location of the strain gages were
recorded. A typical strain gage output profile is shown in Fig. 13.6. Position of the
wavefront versus time plots were obtained for marble A, marble C, and marble D disk
assemblies. Typical plot is shown in Fig. 13.7. The position of the wavefront was
obtained from the strain peaks in the recorded strain profile. The peak in the strain
profiles, being clearly defined, were given preference over the arrival times of the waves
in the calculation of the wave velocity. Also, the strain profiles being symmetric, the

choice of the peak strain avoided any significant error due to the spreading of the strain

203




profiles due to the material and the geometric dispersion. The stress wave velocity was
obtained by drawing a best fit line through the experimental points. The results indicate
that a correlation exists between the stress wave velocity and the grain size. It is observed
that the average wave velocity is higher for rocks with larger grain size. The average
grain size of marble A was the smallest and the stress wave velocity was 1210 m/sec. The
grain size of marble C was higher and the corresponding stress wave velocity obtained
was 1425 m/sec while marble D had the largest average grain size and a stress wave
velocity of 1525 m/sec. This trend is to be expected as the stress wave encounters a fewer
number of grain boundaries or obstacles as it propagates through the granular rock
material having a larger grain size.

To study the stress wave attenuation in different grades of marble the normalized
peak strain was plotted against the stress wave propagation distance as shown in Fig.
13.8. The contact stress was normalized with respect to the stress at the contact between
the disks 2 and 3. At the contact point the contact strain increases from zero to a peak
value and then gradually decreases towards zero. Some oscillations are seen in the strain
profile due to the reflection of waves from the boundaries. A typical duration of the
contact was 85 us. Due to the cumulative effect of the internal losses within the disk,
energy spent in closing the contacts, and the reflection effects from the boundaries of the
disk the stress wave attenuates rapidly in the first two disks and then gradually as the
distance from the explosive loading increases. Again the disk with the smallest grain size
shows the steepest drop in contact strain. Marble A shows 50 % drop in its peak strain
value as the wave travels through the first two disks. Marble C and Marble D show about
37 % drop in its peak value for the same distance of travel. After this the attenuation in
all the three grades of marble is similar and the peak strain drops to 35 % of its initial
value as the wave propagates through ninc disk diameters.

13.4.2 Wave Propagation in Damaged Rock Disk Assembly

To quantify the damage occurring in the rock disks during wave-propagation,
tensile splitting tests were carried out to obtain the residual tensile strength. The residual
strength of the first two disks was studied as most of the attenuation in the stress wave
occurs in these disks. Table 1 lists the residual tensile strength of the first two disks as

a function of the number of stress wave loadings. It was observed that after the passage

204




of the first stress wave the residual strength of the first disk falls down to 63 % of its
value in the virgin state (1125 N/m?). Additional drop of 8 % in the tensile strength
occurs after the second loading wave. As the number of stress wave loadings is increased
further the residual tensile strength reaches a limiting value of around 600) N/m?* (51 %)
before the disk fractures.

The tensile strength of the second disk drops down by only 17 % after the first
two stress waves. This happens because the cumulative damage occurring in the second
disk is relatively small as compared to the first disk as the peak strain value attenuates
by almost 40 % by the time the stress wave propagates through the first disk. As the
number of shock wave loadings is increased further, the residual strength remains fairly
constant until the fourth loading wave after which the tensile strength falls to 60% of the
tensile strength value in the virgin state.

The average stress wave velocity in the disk assembly was plotited as function of
repeated stress wave loading as shown in Fig. 13.9. The velocity increases from 1080
m/sec in the virgin state to 1400 m/sec after the passage of the first stress wave. As the
number of stress wave loadings is increased further the wave velocity undulates about the
terminal velocity of 1450 m/sec and eventually falls off as the cumulative damage
increases in the disks. The increase in wave velocity, after the first stress wave, is
partially due to the fact that as the contacts are established the disks come closer to each
other resulting in increased stiffness of the assembly. At the same time as the wave
propagates it closes the preexisting voids and microcracks in the disks resulting in a
further increase of velocity. As the number of stress wave loadings is increased the
cumulative damage in the disks increases resulting in an increase in the number of
microcracks. These microcracks impede the progress of the stress waves as it has to travel
around these cracks.

The normalized contact strain for the contact point 7-8 under repeated stress wave
loading is shown in Fig. 13.10. The contact strain is normalized with respect to the
strain obtained at the contact 7-8 after the first stress wave loading. The peak contact
strain at contact 7--8 was used as an indicator of the accumulation of the damage in the
first seven disks of the assembly under repeated loading. From the plot it can be seen that

like in the case of the velocity the contact strain first increases, reaches a terminal level
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and then falls off as the damage accumulates in the disks.

As the number of stress wave loadings is increased damage occurs around the
contact zone due tG high contact stresses and large scale crumbling and pitting is observed
near the contact zone. Away from the contact point the grains simply separate along the
grain boundaries. Rock grains are made up of crystals having dissimilar orientations and
thus having different rates of stress wave propagation. This causes differential stresses to
develop along the grain boundaries which tend to pull the grains apart. Fig. 13.11 shows
the photomicrographs of the area near the contact zone of the disks after the passage of
the first two stress waves. Close examination of the fracture surface also shows fractures
which radiate from the contact area. These are caused by the hoop stresses which develop
at the front of the divergent stress wave. Spalling is noticed near the lower contact area
of the disk. This is caused by the interference of the tail portion of the compressional
wave and the front of the same wave which was transformed, on reflection at the free
surface into a tension wave. Rocks being strong in compression but weak in tension are
particularly prone to spalling.Under repeated loading the microcracks formed due to the
grain boundary weakening, radial microfracture and those formed due to spalling combine
together to create open cracks on the disk surface as shown in the photomicrograph in
Fig. 13.12. The microcracks and the surface crack impede the propagation of the stress
wave and lower the stiffness of the disk assembly resulting in the attenuation of the stress
waves and reduction of the stress wave velocity.

13.5 CONCLUSIONS

A dynamic strain gage technique was employed to study wave propagation and
dynamic load transfer in granular rock media. The rock media was modeled as a one
dimensional array of circular disks fabricated from different grades of Vermont marbles
having different microstructure. The dynamic data was analyzed to obtain the average
wave velocity, stress wave attenuation for both virgin as well as damaged rock media.
The residual strength of the disks was estimated after the passage of the stress wave
using an indirect tensile test. The damage in the disks was studied by taking optical
micrographs of the disk surface. The results indicate that:

1. A correlation exists between the microstructure of the rock material and the

stress wave velocity. Larger the grain size of the rock media higher is the stress wave
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velocity. For the different grades of marble studied, the wave velocity corresponding to
the largest and the smallest grain sizes was 1525 m/sec and 1210 m/sec respectively.

2. Rapid attenuation in the peak contact strains, and thus the amplitude of the
stress wave, takes place as the wave propagates through the first three disk diameters.
Moreover, it is observed that this rate of decay increases as the grain size of the marble
decreases. However, as we move further away from the point of loading all the three
grades of marble approach the same rate of attenuation.

3. The stress wave velocity increases sharply by almost 30% after the passage of
the first stress wave. Upon repeated explosive loading the stress wave velocity approaches
a terminal velocity of 1450 m/sec and eventually falls off as the disk fails by fracturing
across the surface.

4. The residual tensile strength of the disk decreases as the number of stress wave
loadings was increased. Further, a limiting residual strength value exists which remains

fairly constant upon repeated loading until the disk tractures.

207




Table 13.1 Residual strength as a function of number of stress wave loading

NUMBER OF STRESS RESIDUAL RESIDUAL
WAVES THROUGH THE STRENGTH STRENGTH
DISK ASSEMBLY N/m? N/m?
15mg lead azide DISK 1 DISK 2

VIRGIN 1125 1185
1 710 1160
2 640 980
3 610 1040
4 FRACTURED 830
5 FRACTURED 690
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CHAPTER 14

WAVE PROPAGATION IN SATURATED GRANULAR MEDIA

An experimental investigation was conducted using dynamic photoelasticity and
high speed photography to study stress wave propagation and dynamic load transfer in
fluid-saturated granular media. The stress wave was generated by detonating a small
amount of explosive. The granular media was simulated by circular disks fabricated from
Homalite 100. In order to compare the effects of fluid viscosity on wave propagation,
different fluids such as water, Dow Corning 200 fluids with viscosity 10 cs and 100 cs,
were used in this study.

14.1 INTRODUCTION

Wave propagation in a discontinuous media has been of interest to the soil and
rock mechanics community. The propagation of elastic wave in the earth’s crust is most
intimately related to the properties of sand, soil and rocks. The elastic properties of these
substances are greatly affected by the amount of water contained in them, packing
density, porosity, the size of the particles that form the substances and the binding
material which they contain. The equations governing the interaction of the solid and fluid
media were first established for quasi-static phenomena by Biot (1941) who extended
them to the dynamical case (1962a and 1962b). Then many researchers have done a lot
of work on this topic, for example, Sandhu (1968), Prevost (1982).

Current interest in geomechanics is focused on transient phenomena occurring in
earthquakes, wave loading and consolidation. For all of these the coupling between the
deformation of the ’solid skeleton’ of the soil or rock and the motion of the pore fluid is
of primary importance. Shukla and Prakash (1990) experimentally investigated wave
propagation in fluid-saturated and unsaturated porous media. Ross, et.al. (1989) conducted
experiments to determine the effects of particle size, moisture content and peak magnitude
on the transmissibility of pressure waves in a granular or soil medium.

However, little attention has been paid to the effect of viscosity of the fluid which
saturates the granular media. As a matter of fact, the soil or rock media can be saturated
by pure water or crude oil which has different viscosity from each other. This viscosity

is believed to affect the shear force transfer between particles. Thus it is proposed not
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only to investigate the wave propagation in saturated granular media, but also to study the
effects of viscosity of pore fluids.
14.2 EXPERIMENTAL PROCEDURE

Experimental models for one and two dimensional arrangements are shown in
Figs. 14.1 and 14.2. The fluids were contained in a leak-proof box made from plexiglass
sheets. The circular disks were then placed inside the fluids with desired packing
geometry. The fluids used in this investigation were water, DOW CORNING 200 fluid
10 cs, DOW CORNING 200 fluid 100 cs. The later two kinds of fluids have ten and one
hundred times the viscosity of water, respectively.

The wave propagation phenomena due to explosive loading was studied using the
technique of dynamic photoelasticity and high speed photography. This technique has
been mentioned before and will not be discussed here. The high speed photographic
system operates as a series of high intensity extremely short duration pulses of light and
provides 20 photoelastic images at discrete times during the dynamic event. These
photographs of the wave propagation process at different stages of development provided
the necessary data to obtain the velocity and attenuation of the stress wave.

The sequence of 20 phntographs obtained from the high speed camera were
analyzed to obtain the wave velocity and the stress wave attenuation in granular media
saturated with different fluids. The wave velocity was obtained by plotting the
instantaneous position of the wave front with respect to time. The slope of this line gave
the average wave velocity. The contact load between two disks was obtained by anaiyzing
the fringe patterns around the contact. The effect of fluids on the fringe pattern
appearance is negligible since the fluid layer on the disk surface is very thin.

14.3 Results and Discussions

The first series of experiments was conducted in a one dimensional disk assembly.
Fig. 14.3 shows the isochromatic fringes obtained in a single chain granular arrangement
saturated with water. The wave front as a function of time is plotted in Fig. 14.4. The
slope of the line in Fig. 14.4 gives the average wave velocity about 965 m/s which is
little bit lower than the wave velocity of 1050 m/s in the same arrangement without
saturation. This s.nall reduction of wave velocity can be explained that between the disks

there exists a small layer of fluid through which the wave motion takes more time. The
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contact load as a function of time is plotted in Fig. 14.5. It can be seen from Fig. 14.5
that the contact load profiles have similar shape as those obtained in a single chain disk
assembly without saturation. The amplitude attenuation for four disk distance (127 mm)
is about 24% ( see Table 14.2). However, it is onlv around 14% drop of wave amplitude
when there is no saturation. This higher drop in wave amplitude is because some of the
energy was transferred to the fluid surrounding the disks, especially at the contact.

Fig. 14.6 and 14.7 show the wave propagation in a single chain disk assembly
saturated with Dow Corning 200 Fluids with 10cs and 100cs. The wave velocities listed
in Table 14.1 are 950 and 940 m/s respectively. The amplitude attenuation are plotted in
Fig. 14.8. It seems there is not much difference for wave amplitude attenuation in a single
chain disk assembly when saturated with different fluids. However, it does show more
attenuation in saturated granular media than that in an unsaturated one.

Fig. 14.9, 14.10 and 14.11 show wave propagation in a hexagonal closed packing
granular media saturated with water and Dow Corning 200 Fluids with 10cs and 100cs
respectively. The wave velocities listed in Table 14.1 are almost the same compared to
the results from 1-D experiments. However, unlike i-D experimental results, the contact
load attenuation in the main chain for saturated granular media is less than that for
unsaturated media. It can be seen from the photographs in Fig. 14.5, 14.10 and 14.11 that
most energy transfer occurred in the two main chains. However, for unsaturated HCP
model as shown in Fig. 14.12 the energy transfer not only occurred in the main chains,
but also in the neighboring disks next to the main chain. Since there is a thin layer of
fluids in a saturated granular media it is more difficult for the wave to propagate from the
main chain disks to the disks with contact angle other than zero degree ( In the main
chain all the disks have contact angle 0°). That is why for 2-D problems, the contact load
attenuation in the main chain for saturated granular media is less than that in unsaturated
one.

14.4 CONCLUSIONS

(1). Wave propagation velocity in granular media decreases by about 5-10% when
saturated with fluids.

(2). Wave amplitude in 1-D granular assemblies show 25% higher attenuation

when saturated with fluids.




(3). In two-dimensional HCP model, due to saturation, wave mainly propagates

through two main chains. Thus, less amplitude attenuation 1s found compared to the

results of unsaturated granular media.

(4). No conclusive information is obtained about the effect of viscosity of the

saturating fluids on wave propagation phenomena in granular media.

Saturated with

Saturated with

TABLE 14.1

Wave Velocity (m/s)

air water Dow Corning 200  Dow Gaming X0
fluids (10 cs) fluids (100 cs)

1050 965 950 940

1010 960 950 900

TABLE 14.2
Contact Load Attenuation
for 4 Disk Distance (127 mm)

air water Dow Coming 200  Dow Coming 20
fluids (10 cs) fluids (100 cs)

18% 24% 25% 23%

70% 62% 52% 53%
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CHAPTER 15

CONTINUUM MODELS FOR MATERIALS
WITH LATTICELIKE MICROSTRUCTURE

Within the framework of the finite element method, a general technique is
presented to compute the continuum constitutive matrix of an equivalent latticelike
microstructural material. The equivalency between the continuum and microstructural
stiffness matrices produces an over-determined system which is solved using the Moore-
Penrose generalized inverse procedure. Although the resulting solution is not exact, it is
unique in the least-squares sense. The present study is limited to two-dimensional
problems; howevever, the technique can easily be extended to three-dimensions. Several
specific examples are given to demonstrate the effectiveness and accuracy of the method.
15.1 INTRODUCTION

The mechanical behavior of materials composed of granular andlor fiberous
microstructures, is inherently involved with the transmission of loadings along discrete
paths within the material. This behavior is fundamentally different from that predicted
by classical theories of continuum mechanics. It has been observed, see for example Oda,
Konishi and Nemat Nasser (1982), that the particular distribution of internal load transfer
depends strongly on the material’s microstructure. A considerable amount of
contemporary research has been conducted in order to understand and explain this
complex microstructural behavior. Burt and Dougill (1977) proposed a simple planar pin-
jointed truss network to simulate the stress-strain behavior of heterogeneous materials.
Based on the fact that granular materials transmit loads only through contact mechanisms,
they have been modeled with network theories, e.g. Trollope and Burman (1980), Bagster
and Kirk (1985), Bideau et.al. (1986), Thornton and Barnes (1986), and Sadd, Qiu and
Boardman (1992). The connection between various lattice gridworks and an equivalent
micropolar continuum has been investigated by Banks and Sokolowski (1968), Bazant and
Christensen (1972) and Sun and Yang (1975). The relationship between the
micromechanics and the overall macro material behavior is a very important and
fundamental issue in current materials research. For example, this relationship is needed

to understand how localized microstrutural failure will lead to global failure of the entire
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body, and to predict the effective global properties of a material knowing its
microstructure. An example of a microstructural model for a granular material is shown
in Figure 15.1. The various contact interactions in the actual material (Figure 15.1a) are
modeled using elastic bar elements as shown in the equivalent microstructural system in
Figure 15.1b. Other more complex microstructural systems can be constructed to simulate
micromechanical behavior.

In addition to this type of research, there has also been considerable interest by
the structural mechanics community in the continuum modeling of large repetitive lattice
structures. The relationship between a continuum and a gridwork of discrete elements
was first examined in some early work (Hrennikoff, 1941, Newmark, 1949) which
involved analyzing a continuum by replacing it with an equivalent elastic gridwork. More
recently the inverse problem of continuum modelling of repetitive latticelike structures
has received considerable attention (Noor et.al., 1978, Kollar and Hegedus, 1985, Renton,
1984, Dow et.al., 1985, Noor and Russell, 1986), and this work has been reviewed by
Noor (1988). The ability to replace a large repetitive gridwork with an equivalent
continuum provides a means to simplify certain calculations for large space structures.
Based on finite element procedures, several methods of computing the properties of an
equivalent continuum have been developed. The majority of these methods were
developed for beamlike and platelike lattices, where a reduction in dimensionality was an
integral part of the equivalency problem.

Current methods of establishing the equivalency between structural and continuum
models have been primarily based on stiffness or energy methods (Noor, 1988). These
techniques have proposed continuum finite elements with suffness (constitutive) and strain
and/or kinetic energy properties that approximate to some degree of accuracy, the
structural system. The present state of research indicates that while satisfactory equivalent
continuum models for linear behavior of beamlike and platelike lattices can be developed,
methods for general continua still need further refinement and study.

The current article addresses this general problem of developing continuum models
for materials with latticelike microstructure. The main objective is to construct a
somewhat general technique to compute the constitutive matrix of an equivalent

continuum given the microstructural properties. The study is limited to two-dimensional




plane problems; however, the technique can easily be extended to three dimensions. After
envoking equivalency between the continuum and microstructural stiftness matrices, the
resulting over-determined system is solved using the Moore-Penrose generalized inverse
procedure. This provides a unique solution in the least-squares sense. Several specific
examples are then presented to demonstrate the effectiveness and accuracy of the method.
15.2 FORMULATION OF EQUIVALENT CINTINUUM PROPERTIES

In the method presented here it is assumed that the stiffness matrix of a repeating
element of the latticelike microstructure is known. This stiffness matrix may be computed
by utilizing the direct stiffness method to assemble each of the discrete element stiffness
matrices in the repeating element into a global stiffness matrix. For the type of problems
under consideration here the repeating element of the latticelike structure and the element
of the equivalent continuum are to have the same degrees of freedom. Therefore, the two
elements will exhibit identical behavior if their stiffness matrices are identical. Thus, the
stiffness matrix of the element of the equivalent continuum is required to satisfy the

equation

[K], = [K], (15.1)

where [K], and [K], are, respectively, the stiffness matrices of the microstructural cell and
the equivalent continuum.
Using standard procedures from finite element analysis, the continuum stiffness matrix

can be written as

[K], = /o, [B]'ID]IB] d<2, (15.2)

where [B] is strain-displacement matrix, [D] is the constitutive matrix containing the
material moduli, i.e. {o}=[Dl{e}, and Q, is the element domain. Ultilizing Gaussian
quadrature to evaluate the integral in equation (15.2), the equivalency equation (15.1) can
be rewritten as

(K], = &i; tia,(BIT,[DIB;J;] (15.3)
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where t;, a;, and |J;| are, respectively, the thickness, the weighting factor, and the
determinant of the Jacobian, all evaluated at the integration point r;, s;. The values of the
weighting factors and the location of the integration points (which are specified in natural
coordinates r and s) are determined by the order of Gaussian quadrature chosen (Bathe,
1982). The values of the strain-displacement matrix and the Jacobian matrix are
determined by the continuum finite element selected to model the equivalent continuum.
Thus, once the interpolation scheme has been chosen, the value of [D] is the only
unknown in equation (15.3). Therefore, equation (15.3) can be used to solve for the
constitutive matrix [D] of the equivalent continuum.

At this point it should be noted that equation (15.3) is only valid for a homogeneous
equivalent continuum, i.e. the value of [D] is assumed to be the same at each sampling
point in the continuum element. It should also be noted that it has been implicitly
assumed that a strain energy function exists for the equivalent continuum, which implies
that [D] = [D]”. Therefore, it is only necessary to solve for the upper diagonal terms of
the constitutive matrix.

Evaluating the right-hand-side of equation (15.3), and rewriting the resulting equation

in the standard form utilized for systems of simultaneous equations, we have
[Al{D} = {K} (15.4)

where {D} is a vector containing the unknown upper diagonal terms of matrix [D], {K}
1s a vector containing the known terms of the matrix [K],, und [A] 15 a known non-square
coefficient matrix determined by evaluating the right-hand-side of equation (15.3).
Equation (15.4) represents an M? by N system of simultz;neous equations, where M is the
number of degrees of freedom in the equivalent continuum element, and N is the number
of unknowns. Since {D} contains at most 21 unknowns, it is apparent that equation (15.4)
is severely over-determined. For example, a plane stress problem which utilizes an
equivalent continuum element with eight degrees of freedom would have sixty-four
equations and six unknowns. Due to the fact that equation (15.4) is over-determined,
standard solution procedures such as Gauss elimination are not applicable, and thus it is

not possible to determine an exact solution. Therefore, a residual error vector defined by
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{R} = {K}-(A|{D}, (15.5)

has, in general, entries which are not equal to zero. Since it is not possible to make all
of the entries in the residual error vector equal to zero, a solution is sought which
minimizes the size of this error vector. The approach utilized in this work is to determine
a solution which minimizes the sum of the squares of the entries in the residual error
vector. It is well known that a solution to such a linear least squares problem yields a
residual error vector which is orthogonal to the column space of [A]; see, for example,

Stewart (1973). Thus, the residual error vector satisfies the equation

[AT{R} = {0}. (15.6)

Substituting equation (15.5) into equation (15.6) yields the equation

[A)'[AD} = [AT"{K} (15.7)

where the coefficient matrix ([A]'[A]) is now a square matrix. Since the coefficient
matrix in equation (15.7) is a non-singular square matrix, provided [A] has linearly
independent columns, the solution for {D} can be obtained by simply inverting the

coefficient matrix. Thus, the solution for {D} can be written as

{D} = (AI"TA]'[AT{K} (15.8)

where the matrix ([A]"[A])'[A]" is known as the Moore-Penrose generalized inverse
(Stewart, 1973). As mentioned previously, the solution represented by equation (15.8)
is not an exact solution. However, provided that [A] has linearly independent columns,
it is a unique solution in the least-squares sense.
15.3 EXAMPLES AND DISCUSSI)N

The method presented in the previous section was utilized, with a bi-linear
interpolation scheme and 2 by 2 Gaussian quadrature, to compute equivalent continuum

properties for the various repeating cells shown in Figure 15.2. For the sake of
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simplicity, two-dimensional examples were chosen to illustrate the effectiveness of the
method under consideration; however, it should be noted that this method can also be
applied to three-dimensional latticelike structures by simply selecting a different
interpolation scheme and a different order of Gaussian quadrature. Equivalent continuum
properties for the repeating cells shown in Figures 15.2a and 15.2b were also computed
by an alternate method. This alternate method involves relating the force and deformation
characteristics of a small segment of the grid to those of a small segment of the
equivalent continuum as each is subjected to a homogeneous deformation (Kollar and
Hegedus, 1985). The derivation of this alternate method relies heavily on the definition
of a homogeneous deformation, i.e. lines which are parallel and straight before
deformation remain parallel and straight after deformation. Thus, in analyses where a
more general state of deformation must be considered this alternate method may not yield
accurate results.

The computed equivalent continuum properties are shown in Table 15.1. The
equivalent properties are the upper diagonal terms of the constitutive matrix [D]. It
should be noted that the properties of the continuum can easily be expressed in terms of
it’s elastic constants once the constitutive matrix is known, e.g. the shear modulus is
given by G,,=D,;. This alternate representation of the equivalent continuum properties
might be desirable for certain anlayses, e.g. computation of the wave speed for dynamics
problems.

Table 15.1 also contains a measure of the accuracy of the computed equivalent
continuum properties. The error measure was computed by subjecting both the repeating
cell and the equivalent continuum element to the nonhomogeneous deformation state
shown schematically in Figure 15.3 and then computing the percent difference in the
stored strain energy. The displacement vector specified by the selected nonhomogeneous
deformation state contains only non-zero terms. Thus, each term in the stiffness matrices
will be involved in the strain energy computation. This avoids the possibility of
inadvertently accounting for the accurate terms and neglecting the inaccurate terms, or
vice versa. It should be noted that the error measure listed in Table 15.1 is not a function
of the magnitude of the chosen displacement vector; however, it is a function of the

direction of the displacement vector. Thus, since the error in stored strain encrgy is a
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function of the shape of the chosen deformation state, the same deformation state was
utilized for each of the examples examined in this work.

The repeating cells shown in Figure 15.2 are composed of truss elements, i.e. discrete
one-dimensional elements which have a single extensional degree of freedom at each
node. The stiffness of each truss element is determined by the specified modulus of
elasticity, cross-sectional area, and length. Since the length of each element is determined
by the configuration of the repeating cell, only two parameters are required to specify the
stiffness of each truss element. The truss elements utilized in the repeating cells shown
in Figure 15.2 were assigned a modulus of elasticiiy of 30x10° psi. The truss elements
utilized in Figures 15.2a and 15.2b were assigned a cross-sectional area equal to either
A, or A,, where A, = 0.75 in® and A, = 0.53 in? (See Figure 15.2). Each of the truss
elements utilized in the repeating cell of Figure 15.2c was assigned a cross-sectional area
equal to 0.75 in”.

The square lattice with diagonals shown in Figure 15.2a was chosen as an example
because it’s equivalent continuum properties have been discussed by other researchers
(Hrennikoff, 1941, Kollar and Hegedus, 1985). Thus, the accuracy of the method under
consideration can be compared to the accuracy of a well known alternate method. By
examining the results computed for case 1-1 (see Table 15.1) it is seen that the
constitutive matrix computed by the alternative method is that of an isotropic material,
i.e. D3 = Dy = 0.0, D, = Dy, and D, = D,, + 2D,;. This is due to the fact that the
alternate method predicts isotropic equivalent continuum properties for the repeating cell
shown in Figure 15.2a if the cross-sectional areas A, and A, are chosen to satisfy the
relationship A,/A, = 1/¥2. The results computed for case 1-1 also show that the alternate
method predicts that D, = D,;; in fact, the alternate method predicts this result for all
repeating cells, regardless of the cross-sectional areas chosen. The results computed for
case 1-1 also indicate that the equivalent continuum properties computed by the alternate
method result in strain energy values which are considerably difterent than the values
computed for the repeating cell. By examining the results computed for case 1-2 it is
seen that the present method offers some major advantages over the alternate method.
For example, the method under consideration removes the restriction D, = D,;, and it also

results in strain energy values which are considerably more accurate than the values
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computed with the alternate method. Also, for case 1-2 the present method yields a
constitutive matrix for the equivalent continuum which is, like the repeating cell itself,
invariant to a 90, 180, or 270 degree rotation, but not invariant to all rotations. That type
of orthotropic material behavior seems to be more reasonable than the isotropic behavior
predicted by the alternate method.

The example shown in Figure 15.2b was chosen to determine the effect of a change
in cell size on the equivalent continuum properties. By examining the results computed
for cases 1-3 and 1-4 it is seen that the equivalent continuum properties computed by both
the present method and the alternate method are inversely proportional to the size of the
repeating cell.

By examining the results computed for case 1-5 (Figure 15.2¢), it is seen that the
present method yields accurate results regardless of the complexity of the repeating cell.
The results computed for case 1-5 may also be interpreted as showing that the repeating
cell of Figure 15.2c more closely approximates a continuum than the repeating cells
shown in Figures 15.2a and 15.2b.

The examples shown in Figure 15.2 were used to determine how closely the behavior
of one element of the equivalent continuum could approximate that of one repeating cell
of a latticelike microstructure. The examples of Figure 15.4 were chosen to determine
how closely the behavior of a patch of elements of the equivalent continuum
approximates that of a larger segment of the latticelike structure. The basic repeating cell
utilized in each of the examples shown in Figure 15.4 is the same cell which was given
in Figure 15.2a; thus, the equivalent continuum properties computed for case 1-2 in Table
15.1 can be utilized in each of the examples shown in Figure 15.4. Table 15.2 shows the
percent difference in stored strain energy between the patches of repeating cells and the
continuum element models, when each is subjected to the nonhomogeneous deformation
state shown in Figure 15.3.

The lattice shown in Figure 15.4a consists of four repeating cells of the type
examined in Figure 15.2a. The equivalent continuum model utilized to approximate the
behavior of the lattice consists of four continuum elements. As listed for case 2-1 in
Table 15.2 the percent difference in stored strain energy computed for the lattice and the

patch of continuum elements is 9.0 %. This seems to indicate that the equivalent
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continuum model of an entire latticelike structure would be nearly as accurate as the
equivalent continuum model of a single repeating cell.

The lattice shown in Figure 15.4b also consists of four repeating cells of the type
shown in Figure 15.2a. The equivalent continuum model utilized to approximate the
behavior of this lattice consists of one continuum element. As listed for case 2-2 in Table
15.2 the percent difference in stored strain energy for this case is 9.2 %. The results of
this example seem to indicate that an entire latticelike structure could be modelled by a
relatively small number of continuum elements, with a degree of accuracy that is largely
determined by the accuracy of the equivalent continuum properties utilized. Thus, this
example illustrates the benefit of the formulation presented in the previous section, as well
as the power of equivalent continuum modelling.

15.4 CONCLUSIONS

The results presented in Table 15.1 indicate that the method under consideration
yields equivalent continuum properties which are a good approximation to a
microstructural repeating cell, e.g. the mean error computed for the repeating cells shown
in Figure 15.2 is 3%. The results presented for the repeating cells in Figures 15.2a and
15.2b seem to indicate that for cases which involve nonhomogeneous deformation states
the method presented here is significantly more accurate than the previous alternate
method examined. The results presented in Table 15.2 seem to indicate that by utilizing
the present method to compute the equivalent continuum properties of a repeating cell,
an entire latticelike microstructure could be modelled with a reasonable degree of

accuracy by using a relatively small number of continuum elements.




TABLE 15.1. Equivalent continuum properties computed for the repeating cells shown in Figure 15.2.

EQUIVALENT CONTINUUM PROPERTIES(/E)® 9% ERROR

CASE FIG METHOD IN STRAIN

D, D, Dy, D,, Dy Dy ENERGY
1-1 15.2a KM' 1.125 0375 | 00 | 1.125 | 00 | 0.375 354
1-2 15.2a PM? 2.089 0375 | 00 | 2.089 | 0.0 | 0.482 7.1
1-3 15.2b KM 0.563 0.188 | 00 | 0563 00 | 0.188 354
1-4 15.2b PM 1.045 0.188 [ 00 | 1.0451 00 { 0.241 7.1
1-5 15.2¢ PM 3.373 15411 00 | 3373 ] 00 | 1.385 1.7

'Equivalent continuum properties computed by assuming a homogencous deformation state, see Kollar and
Hegedus (1985).

*Equivalent continuum propersics computed by method described in this work.

*Equivalent continuum properties were normalized by dividing them by the modulus of clasticity utilized

for the discrete members in the repeating cell.

TABLE 15.2 Computed difference in stored strain energy between a patch of repeating cells and the
equivalent continuum models shown in Figure 15.4.

EQUIVALENT CONTINUUM PROPERTIES(/E) UTILIZED! % ERROR
CASE FIG IN STRAIN
D, D,, Dy, D, Dy D, ENERGY
2-1 15.4a 2.089 0.375 0.0 2.089 0.0 0.482 9.0
2-2 15.4b 2.089 0.375 0.0 2.089 0.0 0.482 9.2

'Equivalent continuum propertics were normalized by dividing them by the modulus of clasticity utilized

for the discrete members in the repeating cell.
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(3) Square L* x 1° Lattice wth Diagonals

(b) Square 2* x 2° Lastice wich Dagonals

(c) Square Latuce withia a Usit Square Lattice

Fig. 15.1 Granular media model with a Fig. 15.2 Repeating cells examined
superimposed elastic network in the present work
— s .

1]

(a) 4 Regeating Ceils Modeted by 4 Continuum Elemeats

(b} 4 Repeattng Cells Modeleq by { Contiuya Elemeat

Fig. 15.3 Non-homogeneous deformation state Fig. 15.4 Partches of repeating cells and their
utilized, dotted configuration equivalent continuum models
indicates initial state.
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CHAPTER 16

WAVE MOTION IN LARGE RANDOM ASSEMBLIES
WITH VARIOUS ANISOTROPY

In order to investigate the effects of granular anisotropy on wave motion in
particulate materials, theoretical distinct element studies were conducted on large random
assemblies. These particular assemblies were specially generated so as to represent media
with various degrees of granular anisotropy. Such anisotropy was measured using the
fabric variable of the distribution of the local branch vectors which connect neighboring
mass centers of particles in contact. The constructed assemblies were designed so as to
produce varying amounts of anisotropy in two orthogonal directions.

16.1 RANDOM MEDIA GENERATION

In order to study large assemblies with varying degrees of fabric anisotropy it was
necessary to develop a random particulate media generator computer code. Many
different techniques were considered which produced varying degrees of porosity and
anisotropy. Three particular schemes are discussed which provided assemblies with
desired fabric.

16.1.1 Strongly Anisotropic Particulate Media Generator

This generator produced assemblies with very high degrees of anisotropy with
respect to two orthogonal directions. The algorithms employed to generate the assemblies
can be described in the following steps.

1. An initial base layer of disks is placed along a horizontal line, with a spacing

distance between neighboring disk centers being varied randomly between one and

two disk diameters (see Fig. 16.1a).

2. Each pair of neighboring disks in the base layer is then used to generate a new

disk making contacting with a base layer pair, see Fig. 16.1b. The position of the

new disk is unique, and in this way a new layer of disks is formed.

3. To generate the next layer, a new disk is randomly generated to make contact

with the disks in the previous layer. This generation is made by constraining the

angle of the branch vectors of each newly constructed contact pair to lie in a

particular range (215° for the cases shown) with respect to the vertical direction,
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see Fig. 16.1c. Thus this next layer is randomly generated.

4. The next layer of disks is generated in the same fashion as step 2 above, see

Fig. 16.1d.

5. The positions of left and right boundary disks of the new layer from step 4 are

determined in a special way. Left boundary disks are generated with a randomly

generated branch angle in the range (115° - 135°) measured counter-clockwise
from the horizontal. Similarly the right boundary disk is generated in the same
fashion with a random branch vector angle in the range (45° - 75°).

During any step if a disk generated overlaps with other disks, then a new trial disk
will be generated to replace it. Following these steps, large random assemblies of
particulate media with pronounced anisotropy can be quickly generated. An example
assembly generated by this scheme is shown in Fig.16.2, and Fig.16.3 illustrates the local
branch vector distribution as a function of the angular direction.

16.1.2 Moderately Anisotropic Random Media Generator

A second particulate media generator was constructed to produce assemblies with
moderately anisotropy. The following construction steps are used to generate these
particular granular systems.

1. An initial base layer of contacting disks is formed such that the angle between
any pairs of branch vectors of disks in contact is randomly selected in the range
120° measured from the horizontal, see Fig. 16.4a.
2. To generate the next layer, the left disk of the new layer is randomly set
(branch vector +20° from the vertical) in contact with the left disk of the previous
layer. The other disks of the new layer are randomly generated from two groups.
One group includes disks that are in contact with their left neighbor as well as
with the disk in the previous layer. The second selection group includes disks
which are permitted to form contact only with its left neighbor. Thus by
randomly selecting disks from these two groups a new layer may be constructed,
see Fig. 16.4b. This procedure is then repeated for as many additional layers as
desired.

As befor., if during any step a disk generated overlaps other disks, then a new

disk will be generated to replace it. Fig. 16.5 shows a generated assembly using this

237




Wl NN TN TN I T B T I G EE e O W EE Ea .

moderately anisotropic scheme, and the distribution of local branch vectors for this
assembly is displayed in Fig. 16.6.
16.1.3 Weakly Anisotropic Random Media Generator
A final generator was developed to construct assemblies with small anisotropy.
The scheme utilized the following procedures.
1. An initial disk forms the starting central point of the assembly. From this first
disk a branch angle is randomly generated to determine the position of a new
contacting disk, see Fig 16.7a. Similar steps are used to randomly generate the
second, third, fourth, and fifth disks which are in contact with the initial
generating disk (Fig. 16.7a).
2. From the existing assembly, randomly select a pair of disks. If a new disk can
be generated to contact with the two disks and not overlap any other existing
disks, this new disk will be added into the existing assembly (see Fig.16.7b). This
process is repeated over all possible disk pairs of the existing assembly.

Again as before disk overlaps are not allowed, and random retries are
initiated if an overlap is found. Fig. 16.8 illustrates a weakly anisotropic random
assembly produced using this algorithm. The local branch vector fabric distribution for
this assembly is shown in Fig. 16.9.

16.2 RESULTS AND DISCUSSION

The distinct element method was used to simulate the dynamic response of
assemblies generated by the previously described methods, and in this way the effect of
granular anisotropy on the wave motion characteristics could be determined. The contact
laws used in the modeling were the nonlinear hysteretic normal and tangential laws used
in our previous work. The simulations involved the comparison of the propagation of
plane waves moving along orthogonal directions in the generated assemblies. The
transient nature of loadings was modeled using a triangular time dependent input loading
pulse with a peak value of 1000 N and a period of 60 us. In order to represent a plane-
wave input loading, the time-dependent pulses were simultaneously applied on particles
along one of the horizontal or vertical boundaries of the assemblies. An imaginary
horizontal or vertical line was drawn near the boundary opposite to where the input

loadings were applied. If a branch vector of a pair particles in contact is intercepted by
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this imaginary line, the normal contact load between the particles was recorded. In this
fashion, the contribution of the individual particle contacts could be determined, and these
recorded loads were then summed and normalized with respect to the sum of the peak
values of the input loadings.

Fig. 16.10 shows this wave propagation simulation for the highly anisotropic
media. The normalized normal contact load profiles are shown for the case of horizontal
and vertical input loadings. It is obvious that for the wave propagating along vertical
direction, the attenuation is much smaller than that of a wave travelling along the
horizontal direction. Also note that the wave speed as determine by the arrival time of
the averaged profile is different for the two propagational directions, with the vertical
wave having a significantly higher speed. These results follow qualitatively from the
local branch distribution diagram in Fig. 16.3. Since most branch vectors lie along the
vertical direction, the load transfer paths in that direction are rather continuous and
straight, while just the opposite would be true for load transfer paths along the horizontal
direction. Therefore the anisotropic media is a better propagator of waves in the vertical
direction.

The normalized normal contact load profiles for a moderately anisotropic random
assembly is shown in Fig. 16.11. For this assembly more local branch vectors occur along
the horizontal direction, and therefore the distinct element simulations indicate that the
horizontal wave attenuation is smaller than that along vertical direction. However, for
this case the wave velocities along both directions were found to be almost the same. By
checking the load transfer paths along vertical direction, it was found that there was one
continuous path along the left vertical boundary, and which contributed most of the
energy in the normalized contact load profile. Waves travelling along this special path
take about the same time as along a continuous horizontal path. It was determined that
if this path was blocked, it would take more time for load to transfer from the bottom to
the top of the assembly and the wave speed of the averaged signal would be reduced.

The final simulation was conducted on the weakly anisotropic assembly shown in
Fig. 16.8. The normalized normal contact load versus time is shown in Fig. 16.12 for this
case. It can now be observed that the differences between the peak transmitted wave

profiles and the wave speeds are quite small. This agrees with the local branch vector
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distribution diagram which indicates that the assembly 1s nearly isotropic.
These results indicate that granular anisotropy can have a significant eféect or *he
propagation of waves through such materials. Additional studies ot large random

assemblies are being undertaken, and a theoretical fabric framework 1s being developed.
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Fig. 16.4 Procedures used to generate moderately
anisotropic random assemblies

Fig. 16.5 A moderately anisotropic random assembly Fig. 16.6 The branch vector disuibution diagram
generated with the steps shown in of the assembly shown in Fig. 16.5
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Fig. 16.7 Procedures used to generate weakly
anisotropic random assemblies

Fig. 16.8 A weakly anisotropic random assembly Fig. 16.9 The branch vector distribution diagram
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of the assembly shown in Fig. 16.8
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